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REMARK ON STABILITY OF TRAVELING WAVES FOR

NONLOCAL FISHER-KPP EQUATIONS

MING MEI AND YONG WANG

Abstract. This paper is concerned with a class of nonlocal Fisher-KPP type reaction-diffusion
equations in n-dimensional space with time-delay. It is proved that, all noncritical planar wave-

fronts are exponentially stable in the form of t−
n
2 e−ντ t for some constant ντ = ν(τ) > 0, where

τ ≥ 0 is the time-delay, while the critical planar wavefronts are algebraically stable in the form of

t
−

n
2 . These convergent rates are optimal in the sense with L1-initial perturbation. The adopted

approach is the weighted energy method combining Fourier transform. It is also realized that,
the effect of time-delay essentially causes the decay rate of the solution slowly down. These re-
sults significantly generalize and develop the existing study [37] for 1-D time-delayed Fisher-KPP
type reaction-diffusion equations. When the time-delay τ vanishes, we automatically obtain the
exponential stability for the noncritical planar traveling waves and the algebraic stability for the
critical planar traveling waves to the regular Fisher-KPP equations.

Key words. Nonlocal reaction-diffusion equations, time delays, traveling waves, global stability,
the Fisher-KPP equation, L1-weighted energy, Green functions.

1. Introduction and Main Results

Following the recent study [37] on the stability of traveling waves to 1-D nonlocal
time-delayed reaction-diffusion equations, in this paper, we study a class of n-D
nonlocal Fisher-KPP reaction-diffusion equations ([4, 11, 25, 37])

(1)







∂u

∂t
−D∆u+ d(u) =

∫

Rn

fα(y)b(u(t− τ, x− y))dy,

u|t=s = u0(s, x), x ∈ Rn, s ∈ [−τ, 0]

for x = (x1, · · · , xn) ∈ Rn and t ≥ 0. Here, ∆u =
n
∑

i=1

∂2u

∂x2
i

, D > 0 is the diffusion

coefficient, τ ≥ 0 is the time-delay, fα(y), with α > 0, is the heat kernel in the form
of

(2) fα(y) =
1

(4πα)
n
2
e

−|y|2

4α with

∫

Rn

fα(y)dy = 1,

d(u) and b(u) both are nonlinear functions satisfying

(H1) There exist u− = 0 and u+ > 0 such that d(0) = b(0) = 0, d(u+) = b(u+),
and d(u), b(u) ∈ C2[0, u+];

(H2) b′(0) > d′(0) ≥ 0 and 0 ≤ b′(u+) < d′(u+);
(H3) For 0 ≤ u ≤ u+, d

′(u) ≥ 0, b′(u) ≥ 0, d′′(u) ≥ 0, b′′(u) ≤ 0.

The model of (1) describes the wave propagations in fluid dynamics, and in
physical, chemical and biological dynamics, initially given by R.A. Fisher [10], and
A. Kolmogoroff, I. Petrovsky and N. Piscounoff [22]. The study on such a wave
propagation phenomenon can be also found in [1, 31] for the fluid dynamical exper-
iments on Taylor-Couette flow, in [7] for Rayleigh-Benard flow, in [44, 52] for the

Received by the editors June 11, 2011.
2000 Mathematics Subject Classification. 35K57, 34K20, 92D25.
This research was supported by the NSERC of Canada.

379



380 M. MEI AND Y. WANG

chemical wave experiments, and in [3] for population dynamics, combustion, and
biological invasions.

In the equation (1), if we take τ = 0 and α → 0+, and use the property of heat
kernel fα(y):

(3) b(u(t, x)) = lim
α→0+

∫

Rn

fα(y)b(u(t, x− y))dy,

we derive the following regular Fisher-KPP reaction-diffusion equation [3, 10, 9, 15,
53, 55]

(4)







∂u

∂t
−D∆u = h(u),

u|t=0 = u0(x), x ∈ Rn,

with h(u) = b(u)−d(u). Particularly, taking d(u) = u2 and b(u) = u, then we reduce
(4) to the following classical Fisher-KPP equation [3, 8, 10, 12, 21, 22, 41, 43]

(5)
∂u

∂t
−D∆u = u(1− u), t > 0, x ∈ Rn.

Clearly, from (H1), both u− = 0 and u+ > 0 are constant equilibria of the
equation (1); and from (H2), u− = 0 is unstable and u+ is stable for the spatially
homogeneous equation associated with (1); and from (H3), both b(u) and d(u)
are increasing, and b(u) is concave downward and d(u) is concave upward. These
characters let the equations (1) and (4) capture the most basic features of the
classical Fisher-KPP equation (5), so we call the equations (1) and (4) as the
nonlocal/local Fisher-KPP type reaction-diffusion equations. Except the standard
example with b(u) = u and d(u) = u2 for the classical Fisher-KPP equation (5),
equation (1) includes the other two important examples. One is the Nicholson’s
blowflies equation [27, 28, 30, 35, 36, 37, 38, 39, 47, 48]

∂u

∂t
−D∆u+ δu(t, x) = εp

∫

Rn

fα(y)u(t− τ, x− y)eau(t−τ,x−y)dy,

with

b(u) = εpue−au and d(u) = δu, ε > 0, p > 0, a > 0, δ > 0.

Obviously, these specified functions b(u) and d(u) satisfy (H1)-(H3) with u− = 0
and u+ = 1

a ln εp
δ for 1 < εp

δ ≤ e. The other typical example is the age-structured
population model [2, 13, 14, 26, 37, 40]

∂u

∂t
−D∆u + δu2(t, x) = pe−γτ

∫

Rn

fα(y)u(t− τ, x− y)dy,

with

d(u) = δu2 and b(u) = pe−γτu, δ > 0, p > 0, γ > 0,

which also satisfy (H1)-(H3) automatically with u− = 0 and u+ = p
δ e

−γτ .
A planar traveling wavefront to the equation (1) is a special solution in the form

of u(t, x) = φ(x · e + ct) with φ(±∞) = u±, where c is the wave speed, e is a
unit vector of the basis of Rn. Without loss of generality, we can always assume
e = e1 = (1, 0, · · · , 0) by rotating the coordinates. Thus, we have the planar
traveling wavefront in the form φ(x ·e1+ ct) = φ(x1+ ct), which satisfies, for τ ≥ 0,

(6)







cφ′ −Dφ′′ + d(φ) =

∫

Rn

fα(y)b(φ(ξ1 − y1 − cτ))dy,

φ(±∞) = u±,


