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LOCALIZED POINTWISE ERROR ESTIMATES AND GLOBAL

L
p ERROR ESTIMATES FOR NITSCHE’S METHOD

MICHAEL NEILAN

Abstract. We derive localized pointwise error estimates for Nitsche’s method applied to an elliptic
second order problem in Rn (n = 2, 3). Using these results, we also prove quasi-optimal global
Lp error estimates as well. Numerical experiments are provided which back up the theoretical

findings.
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1.1. Introduction. We consider the following second order elliptic problem:

Lu := −∇ · (A∇u) + b · ∇u+ cu = f in Ω,(1.1a)

u = 0 on ∂Ω.(1.1b)

Here, Ω ⊂ Rn (n = 2, 3) is an open bounded domain with smooth boundary,
b ∈ Rn, c ∈ R, and A ∈ Rn×n is a symmetric positive definite matrix. More
assumptions about the data and domain are given in the following subsection.

Recall that Nitsche’s method [17] for (1.1) is defined as seeking a function uh ∈ Vh

such that

A(uh, v) :=

∫

Ω

(

(

A∇uh

)

· ∇v + b · ∇uhv + cuv
)

dx+ η
∑

e∈Eb
h

1

he

∫

e

uhv ds(1.2)

−
∑

e∈Eb
h

∫

e

(

A∇uh

)

· nev ds−
∑

e∈Eb
h

∫

e

(

A∇v
)

· neuh ds =

∫

Ω

fv dx ∀v ∈ Vh,

where Vh is the finite element space, and η denotes the penalty parameter which
imposes the boundary conditions (1.1b) weakly into the variational formulation
(a detailed description of the notation used above is presented in the following
subsections). It is well-known that if the penalty parameter is taken sufficiently
large then the method (1.2) is well-posed (cf. Lemma 2.1 below). Moreover, due to
Lemma 2.2 and Céa’s Lemma [3, 6], we have

‖u− uh‖W 1,2
h

(Ω) ≤ C inf
v∈Vh

‖u− v‖W 1,2
h

(Ω),(1.3)

where ‖ · ‖W 1,2
h

(Ω) denotes a special energy norm defined below, and C denotes a

generic positive constant. The goal of this paper is to derive localized pointwise and
global Lp (2 ≤ p ≤ ∞) error estimates for Nitsche’s method (1.2). One motivation
to derive such estimates is its use in the convergence analysis of a fully nonlinear
problem [16].

Many contributions have been made to establish pointwise and Lp estimates
for classical finite element methods for problems such as (1.1), and we mention
the most significant results. Broadly speaking, the analysis of pointwise estimates
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can be divided into two groups. The first group, which started with the work of
Natterer, Nitsche, Scott, Frehse, and Rannacher [15, 9, 23, 21, 22, 3] obtained Lp

bounds with the use of certain type of weighted L1 estimates for discrete Green
functions. Except for the recent result found in [3, Corollary 8.2.8], all of these
estimates are global, that is, the error at a certain point depends equally on the
smoothness of u on all of the domain [12]. In particular, all of these estimates have
the form

‖u− uh‖Lp(Ω) ≤ Ch| lnh|k̄ inf
v∈Vh

‖u− v‖W 1,p(Ω),(1.4a)

‖u− uh‖W 1,p(Ω) ≤ C inf
v∈Vh

‖u− v‖W 1,p(Ω),(1.4b)

where p ∈ [2,∞], k denotes the polynomial degree of the finite element space, and
k̄ = 1 if k = 1 and p = ∞, and k̄ = 0 otherwise.

In contrast, the second group, which started with the work of Schatz [19] and
later extended by various authors [11, 8, 14], used local L1 error estimates of an
auxiliary discrete Green function to derive weighted pointwise estimates. Using
such techniques, they were able to derive estimates at an arbitrary point which
depends strongly on u only near the point, namely,

|(u − uh)(z)| ≤ Ch| lnh|s̄ inf
v∈Vh

‖u− v‖W 1,∞(Ω),z,s 0 ≤ s ≤ k − 1,(1.5a)

|∇(u − uh)(z)| ≤ C| lnh|
¯̄s inf
v∈Vh

‖u− v‖W 1,∞(Ω),z,s 0 ≤ s ≤ k.(1.5b)

Here, s̄ = 1 if s = k − 1, s̄ = 0 if s < k − 1, ¯̄s = 1 if s = k, ¯̄s = 0 if s < k, and
‖ · ‖W 1,∞(Ω),z,s is a weighted norm concentrated at the point z with strength s. In
addition to being sharper than (1.4) in the case p = ∞, estimates such as (1.5) and
the techniques to derive them spawned new applications such as asymptotic error
expansion inequalities and new a posteriori residual type estimators [19, 8, 7].

In the context of discontinuous Galerkin (DG) methods, there have also been
many contributions to develop L∞ error estimates by different authors [13, 4, 5,
11]. The first by Kanschat and Rannacher [13], which generalizes earlier work of
Rannacher, Frehse and Scott, used a duality argument and weighted L1 estimates
of a discrete Green function. As a result, they obtained estimates of the form (1.4)
in the case p = ∞ and piecewise linear polynomials are used. This work was later
extended and improved by Chen and Chen [4] who derived localized pointwise error
estimates similar to (1.5) using techniques developed by Schatz.

Since Nitsche’s method can be considered a discontinuous Galerkin method re-
stricted to the continuous Lagrange finite element space, it seems plausible that
the analysis for pointwise estimates for DG methods can be used and adapted for
Nitsche’s method. This is the approach we take. Since the sharpest results of
pointwise estimates for DG methods were achieved by Chen and Chen, we follow
their approach and derive pointwise error estimates that are similar to (1.5). As ex-
pected, most of the analysis found in [4] carries over to the case in hand. However,
an added feature in our analysis is that we also derive global Lp error estimates
using the analysis and techniques to derive the pointwise estimates.

1.2. Organization of Paper. In the following subsection, we set the notation
that will be used throughout the paper and then state our main results, Theorems
1.1–1.3. The rest of the paper is devoted to proving these Theorems. First, in
Section 2 we state some preliminary estimates that were shown in [19, 4, 17, 2, 6]
which are used frequently in the main proofs. With this completed, in Section 3
we show that proving the pointwise estimates stated in Theorem 1.1 reduces to


