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NUMERICAL STUDY OF TIME-PERIODIC SOLITONS IN THE

DAMPED-DRIVEN NLS

E. V. ZEMLYANAYA AND N.V. ALEXEEVA

Abstract. We study localised attractors of the parametrically driven, damped nonlinear Schrödinger
equation. Time-periodic solitons of this equation are obtained as solutions of the boundary-value
problem on a two-dimensional domain. Stability and bifurcations of periodic solitons and their
complexes is classified. We show that the bifurcation diagram can be reproduced using a few-mode
approximation.
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1. Introduction

We investigated the parametrically driven damped nonlinear Schrödinger equa-
tion (NLS),

(1) iψt + ψxx + 2|ψ|2ψ − ψ = hψ∗ − iγψ.

that describes a large number of resonant phenomena in various physical media:
nonlinear Faraday resonance in a vertically oscillating water trough [15],[16],[23];
the effect of phase-sensitive amplifiers on solitons in optical fibers [13],[18],[14]; mag-
netization waves in an easy-plane ferromagnet placed in a combination of a static
and microwave field [4]; the amplitude of synchronized oscillations in vertically vi-
brated pendula lattices [12],[2],[11] etc. More applications of Eq.(1) are listed in
[8, 9].

In Eq. (1), γ > 0 is the damping coefficient, h > 0 the amplitude of the
parametric driver, and symbol “∗” means the complex conjugation.

Equation (1) exhibits different classes of soliton solutions existing on the (h, γ)-
plane above the straight line h = γ.

Two stationary solitons ψ+ and ψ− are available in analytic form [4]:

(2) ψ±(x) = A±e
−iθ±sech(A±x),

where

A± =

√

1±
√

h2 − γ2,

θ+ =
1

2
arcsin

γ

h
, θ− =

π

2
− θ+.

The soliton ψ−(x) is known to be unstable for all h and γ. Stability properties
of the soliton ψ+(x) for various h and γ were examined in [4].

Other localised attractors of Eq. (1) (that have been found in numerical simula-
tions) include: stationary multi-soliton complexes [5], uniformly travelling solitons
and complexes [6, 7], time-periodic and quasi-periodic solitons [1, 10].

In this paper, we study time-periodic attractors of Eq. (1) that arise as a Hopf
bifurcation of stable stationary soliton solutions. Attractors of periodic solitons on
the (h, γ)-plane were obtained in [10] on the basis of direct numerical simulation
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of Eq. (1) with initial condition in the form of stationary soliton ψ+. In [22, 20]
these were reobtained as solutions of a two-diemsnional boundary-value problem
for Eq. (1). Here, we employ the same numerical approach for our numerical
analysis of time-periodic solitons. Our purpose is to clarify transformations and
interconnections between coexisting periodic one- and two-soliton branches in the
region of parameter γ & 0.35.

In Section 2, we formulate the 2D boundary-value problem and describe our
numerical approach. Results of numerical study are discussed in Section 3. We
present the branches of time-periodic one- and two-soliton colutions for γ = 0.35.
Also, we demonstrate the spatially nonsymmetric time-periodic two-soliton complex
for γ = 0.41. In Section 4, a simple few-mode approximation of the 2D nonlinear
boundary value problem has been suggested. Main results have been summarized
in Section 5.

2. Numerical approach

2.1. Formulation of 2D boundary-value problem. We consider the time-
periodic solutions Eq. (1) as solutions of the boundary value problem on the
two-dimensional domain (−∞,∞)× (0, T ). The boundary conditions are

(3) ψ(x, t) = 0 as x→ ±∞, and ψ(x, t + T ) = ψ(x, t).

The 2D boundary-value problem (1),(3) is solved numerically for the unknown
time-periodic function ψ(x, t), where the period T is also unknown.

Letting t̃ = t/T (0 < t̃ < 1) and defining ψ̃(x, t̃) = ψ(x, t), the boundary-value
problem (1),(3) can be reformulated on the rectangle (−L,L)× (0, 1) (where L is
chosen to be sufficiently large):

(4)







F ≡ iψ̃t̃(x, t̃) + TΦ(ψ̃(x, t̃), h, γ) = 0,

ψ̃(±L, t̃) = 0,

ψ̃(x, 0) = ψ̃(x, 1).

Here,

(5) Φ(ψ̃(x, t̃), h, γ) = ψ̃xx + 2|ψ̃|2ψ̃ − ψ̃ − hψ̃∗ + iγψ̃.

Eq. (4) is supplemented with an additional equation borrowed from [19]:

(6) ReΦ(ψ̃(x∗, t̃∗), h, γ) = 0, x∗ = t∗ = 0.

Solutions (T, ψ̃) of the 2D boundary-value problem (4-6) were path-followed in h
for the fixed γ. The time-independent solution at the point of Hopf bifurcation is
used as starting point of the continuation process. At each value of parameter h
we employ Newtonian iteration scheme presented in 2.2. Continuation algorithm is
described in 2.3.

In what follows, we omitted tildes above ψ and t.
For the graphical representation of solutions we are using the averaged energy

defined by

(7) Ē =
1

T

∫ T

0

dt

∫ ∞

−∞

dxE(x, t),

where

(8) E(x, t) = |ψx|
2 + |ψ|2 − |ψ|4 + hRe(ψ2).

Note that the energy
∫

Edx is not an integral of motion for γ 6= 0.
Stability of solutions is classified by examining the Floquet multipliers of the

corresponding linearized equation. Details are in [22, 8].


