INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, SERIES B Volume 2, Number 2-3, Pages 248–261 © 2011 Institute for Scientific Computing and Information

NUMERICAL STUDY OF TIME-PERIODIC SOLITONS IN THE DAMPED-DRIVEN NLS

E. V. ZEMLYANAYA AND N.V. ALEXEEVA

Abstract. We study localised attractors of the parametrically driven, damped nonlinear Schrödinger equation. Time-periodic solitons of this equation are obtained as solutions of the boundary-value problem on a two-dimensional domain. Stability and bifurcations of periodic solitons and their complexes is classified. We show that the bifurcation diagram can be reproduced using a few-mode approximation.

Key words. Nonlinear Schrödinger equation, temporally periodic solitons, newtonian iterative scheme, numerical continuation, stability, bifurcations

1. Introduction

We investigated the parametrically driven damped nonlinear Schrödinger equation (NLS),

(1)
$$i\psi_t + \psi_{xx} + 2|\psi|^2\psi - \psi = h\psi^* - i\gamma\psi.$$

that describes a large number of resonant phenomena in various physical media: nonlinear Faraday resonance in a vertically oscillating water trough [15],[16],[23]; the effect of phase-sensitive amplifiers on solitons in optical fibers [13],[18],[14]; magnetization waves in an easy-plane ferromagnet placed in a combination of a static and microwave field [4]; the amplitude of synchronized oscillations in vertically vibrated pendula lattices [12],[2],[11] etc. More applications of Eq.(1) are listed in [8, 9].

In Eq. (1), $\gamma > 0$ is the damping coefficient, h > 0 the amplitude of the parametric driver, and symbol "*" means the complex conjugation.

Equation (1) exhibits different classes of soliton solutions existing on the (h, γ) -plane above the straight line $h = \gamma$.

Two stationary solitons ψ_+ and ψ_- are available in analytic form [4]:

(2)
$$\psi_{\pm}(x) = A_{\pm}e^{-i\theta_{\pm}}\operatorname{sech}(A_{\pm}x),$$

where

$$A_{\pm} = \sqrt{1 \pm \sqrt{h^2 - \gamma^2}},$$

$$\theta_+ = \frac{1}{2} \arcsin \frac{\gamma}{h}, \qquad \theta_- = \frac{\pi}{2} - \theta_+.$$

The soliton $\psi_{-}(x)$ is known to be unstable for all h and γ . Stability properties of the soliton $\psi_{+}(x)$ for various h and γ were examined in [4].

Other localised attractors of Eq. (1) (that have been found in numerical simulations) include: stationary multi-soliton complexes [5], uniformly travelling solitons and complexes [6, 7], time-periodic and quasi-periodic solitons [1, 10].

In this paper, we study time-periodic attractors of Eq. (1) that arise as a Hopf bifurcation of stable stationary soliton solutions. Attractors of periodic solitons on the (h, γ) -plane were obtained in [10] on the basis of direct numerical simulation

Received by the editors January 15, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 35K15, 35K55.

of Eq. (1) with initial condition in the form of stationary soliton ψ_+ . In [22, 20] these were reobtained as solutions of a two-diemsnional boundary-value problem for Eq. (1). Here, we employ the same numerical approach for our numerical analysis of time-periodic solitons. Our purpose is to clarify transformations and interconnections between coexisting periodic one- and two-soliton branches in the region of parameter $\gamma \gtrsim 0.35$.

In Section 2, we formulate the 2D boundary-value problem and describe our numerical approach. Results of numerical study are discussed in Section 3. We present the branches of time-periodic one- and two-soliton colutions for $\gamma = 0.35$. Also, we demonstrate the spatially nonsymmetric time-periodic two-soliton complex for $\gamma = 0.41$. In Section 4, a simple few-mode approximation of the 2D nonlinear boundary value problem has been suggested. Main results have been summarized in Section 5.

2. Numerical approach

2.1. Formulation of 2D boundary-value problem. We consider the timeperiodic solutions Eq. (1) as solutions of the boundary value problem on the two-dimensional domain $(-\infty, \infty) \times (0, T)$. The boundary conditions are

(3)
$$\psi(x,t) = 0 \text{ as } x \to \pm \infty, \text{ and } \psi(x,t+T) = \psi(x,t)$$

The 2D boundary-value problem (1),(3) is solved numerically for the unknown time-periodic function $\psi(x, t)$, where the period T is also unknown.

Letting $\tilde{t} = t/T$ ($0 < \tilde{t} < 1$) and defining $\tilde{\psi}(x, \tilde{t}) = \psi(x, t)$, the boundary-value problem (1),(3) can be reformulated on the rectangle $(-L, L) \times (0, 1)$ (where L is chosen to be sufficiently large):

(4)
$$\begin{cases} \mathbf{F} \equiv i \hat{\psi}_{\tilde{t}}(x, \tilde{t}) + T \Phi(\tilde{\psi}(x, \tilde{t}), h, \gamma) = 0, \\ \tilde{\psi}(\pm L, \tilde{t}) = 0, \\ \tilde{\psi}(x, 0) = \tilde{\psi}(x, 1). \end{cases}$$

Here,

(5)
$$\Phi(\tilde{\psi}(x,\tilde{t}),h,\gamma) = \tilde{\psi}_{xx} + 2|\tilde{\psi}|^2\tilde{\psi} - \tilde{\psi} - h\tilde{\psi}^* + i\gamma\tilde{\psi}.$$

Eq. (4) is supplemented with an additional equation borrowed from [19]:

(6)
$$\operatorname{Re}\Phi(\psi(x^*, \tilde{t}^*), h, \gamma) = 0, \quad x^* = t^* = 0.$$

Solutions (T, ψ) of the 2D boundary-value problem (4-6) were path-followed in h for the fixed γ . The time-independent solution at the point of Hopf bifurcation is used as starting point of the continuation process. At each value of parameter h we employ Newtonian iteration scheme presented in 2.2. Continuation algorithm is described in 2.3.

In what follows, we omitted tildes above ψ and t.

For the graphical representation of solutions we are using the averaged energy defined by

(7)
$$\bar{E} = \frac{1}{T} \int_0^T dt \int_{-\infty}^\infty dx \, E(x,t),$$

where

(8)
$$E(x,t) = |\psi_x|^2 + |\psi|^2 - |\psi|^4 + h \operatorname{Re}(\psi^2).$$

Note that the energy $\int E dx$ is not an integral of motion for $\gamma \neq 0$.

Stability of solutions is classified by examining the Floquet multipliers of the corresponding linearized equation. Details are in [22, 8].