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TWO-LEVEL METHODS BASED ON THREE CORRECTIONS

FOR THE 2D/3D STEADY NAVIER-STOKES EQUATIONS

YINNIAN HE AND JIAN LI

Abstract. Two-level finite element methods are applied to solve numerically the 2D/3D steady

Navier-Stokes equations if a strong uniqueness condition (
‖f‖

−1

‖f‖0
)
1

2 ≤ δ = 1 −
N‖f‖

−1

ν2
holds,

where N is defined in (2.4)-(2.6). Moreover, one-level finite element method is applied to solve
numerically the 2D/3D steady Navier-Stokes equations if a weak uniqueness condition 0 < δ <

(
‖f‖

−1

‖f‖0
)
1

2 holds. The two-level algorithms are motivated by solving a nonlinear problem on a

coarse grid with mesh size H and computing the Stokes, Oseen and Newton correction on a fine
grid with mesh size h << H. The uniform stability and convergence of these methods with respect
to δ and grid sizes h and H are provided. Finally, some numerical tests are made to demonstrate
the effectiveness of one-level method and the three two-level methods.
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1. Introduction

In this report we consider the steady incompressible Navier-Stokes equations:

−ν∆u+ (u · ∇)u+∇p = f in Ω,(1.1)

divu = 0 in Ω, u = 0 on ∂Ω,

∫

Ω

pdx = 0,(1.2)

which describes a steady flow of the incompressible viscous Newtonian fluid in a
bounded domain. Here Ω is a bounded domain in Rd(d = 2, 3) assumed to have a
Lipschitz-continuous boundary ∂Ω, u : Ω → Rd and p : Ω → R are the velocity and
pressure, ν > 0 is the viscosity and f represents the given body forces.

Recently, two-level strategy has been studied for steady semi-linear elliptic equa-
tions and nonlinear PDEs by Xu [36, 37], and two-level strategy or multi-level
strategy has been studied for the steady Navier-Stokes equations by Layton [23],
Layton & Tobiska [28], Layton & Lenferink [25, 26] and Layton, Lee & Peterson
[27] and Girault and Lions [7] and He et al [14, 17, 18] and Liu and Hou [29], and
two level discretizations of flows of electrically conducting, incompressible fluids
has been provided by Ervin, Layton and Maubach in [6] . Moreover, a combi-
nation of two-level methods and iterative methods for solving the 2D/3D steady
Navier-Stokes equations is provided by He et al [20, 21]. As for the nonstationary
Navier-Stokes equations, the two-level finite element semi-discretization scheme has
been studied by Girault and Lions [9], and the full discretization of the two-level
finite element method in space variable x and the one-level backward Euler scheme
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in time variable t have been discussed by Olshanskii [34] and the full discretiza-
tion of the two-level finite element method in the space-time variables x and t has
been studied by He [10, 11] and He et al. [12] Liu and Hou [30, 31] and Hou and
Mei[32]. Recently, some multi-level strategy has been studied for the nonstationary
Navier-Stokes equations by He et al. [13, 15, 16].

In this paper, for a larger δ satisfying the strong uniqueness condition δ ≥

(‖f‖−1

‖f‖0

)
1

2 , we consider three two-level finite element methods by solving a nonlinear

Navier-Stokes problem on a coarse grid with mesh sizeH and computing the Stokes,
Oseen and Newton correction on a fine grid with mesh size h << H . Moreover, one-
level finite element algorithm is applied in the case of the weak uniqueness condition

0 < δ < (‖f‖−1

‖f‖0
)

1

2 , where ‖f‖−1

‖f‖0
is small for a given f . From some stability and

convergence analysis with respect to δ of the one-level finite element method, h and
H should be of order O(δ). And from some stability and convergence analysis with
respect to δ of the two-level finite element methods, H should be of order O(δ2) and

h should be of order O(H
3

2 ) or O(δ3) in the case of the Stokes and Oseen correction

and H should be of order O(δ
3

2 ) and h should be of O(H
3

2 ) or O(δ
9

4 ). These facts
show that h and H should be very small for small δ. Hence, for the finite element
approximation of the 2D/3D steady Navier-Stokes equations, it is better to use
one-level finite element method in the case of the weak uniqueness condition and
the two-level finite element methods in the case of the strong uniqueness condition.

Remark. It follows from the definition that ν =
√

(1− δ)−1N−1‖f‖−1
−1. Hence,

small δ means small ν. For one-level finite element approximation of the 2D/3D
steady Navier-Stokes equations, the Stokes, Oseen and Newton iterative methods
can be used, the reader can refer to papers [5, 19, 20, 21].

This paper is organized as follows. In §2 an abstract functional setting of the
Navier-Stokes problem is given together with some basic assumption A0 on Ω for
the steady Navier-Stokes problem. In §3 some assumptions A1-A3 concerning
the finite element spaces Xµ and Mµ with µ = h,H are given, and some uniform
stability and convergence with respect to δ of the finite element solution (uµ, pµ)
are recalled. In §4 the uniform stability and convergence with respect to δ of the
two-level finite element method based on the Stokes correction on fine grid is given.
In §5 the uniform stability and convergence with respect to δ of the two-level finite
element method based on the Oseen correction on fine grid is provided. In §6
the uniform stability and convergence of the two-level finite element method based
on the Newton correction are proved. In §7, some numerical tests are made to
demonstrate the effectiveness of one-level method and the three two-level methods.
In §8 some conclusions are made.

2. Functional Setting of the Navier-Stokes Equations

Let Ω be a convex polygonal/polyhedral domain in Rd. As in [8, 24], we introduce
the following Sobolev spaces,

X = H1
0 (Ω)

d, Y = L2(Ω)d, M = L2
0(Ω) = {q ∈ L2(Ω) ;

∫

Ω

q(x)dx = 0} .

We denote by (·, ·), ‖ · ‖0 the inner product and norm on L2(Ω) or L2(Ω)d. The
space X is equipped with the usual scalar product (∇u,∇v) and norm ‖∇u‖0. The
subspaces ofX and Y are well suited to the incompressible Navier-Stokes equations:

V = {v ∈ X ; divv = 0 in Ω}, V0 = {v ∈ Y ; divv = 0 and v · n|∂Ω = 0}.


