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WAVELETS, A NUMERICAL TOOL FOR MULTISCALE
PHENOMENA: FROM TWO DIMENSIONAL TURBULENCE TO

ATMOSPHERIC DATA ANALYSIS.

PATRICK FISCHER AND KA-KIT TUNG

Abstract. Multiresolution methods, such as the wavelet decompositions, are
increasingly used in physical applications where multiscale phenomena occur.
We present in this paper two applications illustrating two different aspects of
the wavelet theory.
In the first part of this paper, we recall the bases of the wavelets theory. We
describe how to use the continuous wavelet decomposition for analyzing mul-
tifractal patterns. We also summarize some results about orthogonal wavelets
and wavelet packets decompositions.
In the second part, we show that the wavelet packet filtering can be successfully
used for analyzing two-dimensional turbulent flows. This technique allows the
separation of two structures: the solid rotation part of the vortices and the
remaining mainly composed of vorticity filaments. These two structures are
multiscale and cannot be obtained through usual filtering methods like Fourier
decompositions. The first structures are responsible for the inverse transfer of
energy while the second ones are responsible for the forward transfer of en-
strophy. This decomposition is performed on numerical simulations of a two
dimensional channel in which an array of cylinders perturb the flow.
In the third part, we use a wavelet-based multifractal approach to describe
qualitatively and quantitatively the complex temporal patterns of atmospheric
data. Time series of geopotential height are used in this study. The results ob-
tained for the stratosphere and the troposphere show that the series display two
different multifractal behaviors. For large time scales (several years), the main
Hölder exponent for the stratosphere and the troposphere data are negative in-
dicating the absence of correlation. For short time scales (from few days to one
year), the stratopshere series present some correlations with Hölder exponents
larger than 0.5, whereas the troposhere data are much less correlated.
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1. Review on wavelets

The one dimensional wavelet theory is reviewed in this part. The generalization
to higher dimension is relatively easy and is based on tensor products of one di-
mensional basis functions. The two dimensional wavelet theory is recalled here in
the wavelet packets framework only. We present here a summary of the theory, and
a more complete description can be found in [12, 26].
Any time series, which can be seen as a one dimensional mathematical function, can
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be represented by a sum of fundamental or simple functions called basis functions.
The most famous example, the Fourier series,

s(t) =
+∞∑

k=−∞
ckeikt(1)

is valid for any 2π-periodic function sufficiently smooth. Each basis function, eikt

is indexed by a parameter k which is related to a frequency. In (1), s(t) is written
as a superposition of harmonic modes with frequencies k. The coefficients cn are
given by the integral

ck =
1
2π

∫ 2π

0

s(t)e−iktdt(2)

Each coefficient ck can be viewed as the average harmonic content of s(t) at fre-
quency k. Thus the Fourier decomposition gives a frequency representation of any
signal. The computation of ck is called the decomposition of s and the series on
the right hand side of (1) is called the reconstruction of s.
Although this decomposition leads to good results in many cases, some disadvan-
tages are inherent to the method. One of them is the fact that all the information
concerning the time variation of the signal is completely lost in the Fourier descrip-
tion. For instance, a discontinuity or a localised high variation of the frequency
will not be well described by the Fourier representation. The underlying reason lies
in the nature of complex exponential functions used as basis functions. They all
cover the entire real line, and differ only with respect to frequency. They are not
suitable for representing the behaviour of a discontinuous function or a signal with
high localised oscillations.
Like the complex exponential functions of the Fourier decomposition, wavelets can
be used as basis functions for the representation of a signal. But, unlike the com-
plex exponential functions, they are able to restore the positional information as
well as the frequency information.

1.1. Continuous wavelets and the multifractal formalism. The wavelet-
based multifractal formalism has been introduced in the nineties by Mallat [25, 26],
Arneodo [2, 3, 4], Bacry [5] and Muzy [28]. A wavelet transform can focus on lo-
calized signal structures with a zooming procedure that progressively reduces the
scale parameter. Singularities and irregular structures often correspond to essential
information in a signal. The local signal regularity can be described by the decay
of the wavelet transform amplitude across scales. Singularities can be detected by
following the wavelet transform local maxima at fine scales.

The wavelet transform is a convolution product of a data sequence with the
compressed (or dilated) and translated version of a basis function ψ called the
wavelet mother. The scaling and translation are performed by two parameters: the
scale parameter a dilates or compresses the mother wavelet to various resolutions
and the translation parameter b moves the wavelet all along the sequence:

(3) WTs(b, a) =
1√
a

∫ +∞

−∞
s(t)ψ∗

(
t− b

a

)
dt, a ∈ R+∗, b ∈ R.

This definition of the wavelet transform leads to an invariant L2 measure, and thus
conserves the energy (‖s‖2 = ‖WTs‖2). A different normalization could be used
leading to a different invariant.


