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A NOTE ON THE CONSTRUCTION OF FUNCTION SPACES
FOR DISTRIBUTED-MICROSTRUCTURE MODELS WITH

SPATIALLY VARYING CELL GEOMETRY

SEBASTIAN MEIER AND MICHAEL BÖHM

Abstract. We construct Lebesgue and Sobolev spaces of functions defined on

a continuous distribution of domains {Yx ⊂ Rm : x ∈ Ω}. The resulting spaces

can be viewed as a generalisation of the Bochner spaces Lp(Ω; W l
q(Y )) for the

case that Y depends on x ∈ Ω. Furthermore, we introduce a Lebesgue space

of functions defined on the boundaries {∂Yx : x ∈ Ω}. The latter construction

relies on a uniform Lipschitz parametrisation of the above collection of bound-

aries, interpreted as a higher-dimensional manifold. The results are applied

to prove existence, uniqueness and upper and lower bounds for a distributed-

microstructure model of reactive transport in a heterogeneous porous medium.
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1. Introduction

Transport in porous media is governed by at least two highly different spatial
scales: the pore scale and the macroscopic scale, the latter of which is usually
of interest in applications. In cases where two or more transport processes hap-
pen simultaneously on highly different time scales, it has been shown by periodic
homogenisation that distributed-microstructure models (or two-scale models) are
appropriate [3, 2]. Such models consist of averaged equations describing the fast
transport processes and of local microscopic cell problems accounting for the slow
transport. The most studied example is flow in fissured media [1, 25].

¿From a mathematical point of view, these models are interesting due to the non-
standard coupling of the equations and the unusual choice of solution spaces. In [25],
the authors show that the variational formulation of a distributed-microstructure
model with a cell geometry that varies at different points of the medium naturally
leads to function spaces of the form L2(Ω;H1(Yx)) where Yx is another domain
depending on x ∈ Ω. The construction of such spaces and particularly of their
trace spaces is quite intricate and it is the major aim of this paper.

We briefly recall the model from [25] and how a variational formulation is derived.
If Ω ⊂ Rn is the macroscopic flow region, then at each x ∈ Ω the local geometry
is described by a solid matrix block Yx ⊂ Y ⊂ Rn surrounded by the pore Y \ Y x.
The domain Yx can depend on the macroscopic space coordinate x ∈ Ω in order to
account for a heterogeneous medium. For x ∈ Ω, y ∈ Yx and t ≥ 0, let u(x, t) be
the fluid density in the pore space and U(x, y, t) that in the matrix blocks. The
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model equations consist of the (averaged) mass balance of fluid within the pores1

(1a)
∂

∂t
(a(x)u)−divx(A(x)∇xu) =

1
|Y |

∫

∂Yx

k(γxU(x, y, t)−u(x, t))·ν dσy, x ∈ Ω, t > 0,

where γxU(t, x, y) denotes the trace of U at y ∈ ∂Yx, and a family of local mass
balances in the matrix blocks parameterised by x ∈ Ω,

(1b)
∂

∂t
(b(x)U)− divy(B(x)∇yU) = 0, x ∈ Ω, y ∈ Yx, t > 0.

The exchange condition reads

(1c) −B(x)∇yU · νx = k(γxU(x, y, t)− u(x, t)), x ∈ Ω, y ∈ ∂Yx, t > 0.

Following [25], a variational formulation of (1) is given as follows. Let V :=
L2(Ω; H1(Yx)) be an anisotropic Sobolev space (see Def. 4). We look for a pair
of functions u ∈ L2(0, T ; H1(Ω)) and U ∈ L2(0, T ;V ) satisfying (1a) in the usual
weak sense and

d
dt

∫

Ω

∫

Yx

bUΨ dy dx +
∫

Ω

∫

Yx

B∇yU · ∇yΨ dy dx

+
∫

Ω

∫

∂Yx

k(γxU − u) γxΨ dσy dx = 0 ∀Φ ∈ V.

In [25], the authors prove that the system (1) is wellposed in the above sense.
However, a systematic discussion of the properties spaces of the form L2(Ω;H1(Yx))
is missing. Moreover, the cell boundaries Γx need to have some regularity with
respect to x ∈ Ω in order to justify terms of the form∫

Ω

∫

∂Yx

γxU γxΨ dσy dx.

It is the aim of this paper to fill this gap by constructing general spaces Lp(Ω;W l
q(Yx))

and Lp(Ω;Lq(∂Yx)) and proving some elementary properties of them like separa-
bility and reflexivity. While for the former space, it is sufficient that the higher-
dimensional set Q := ∪x∈Ω({x}×Yx) is Lebesgue measurable, it turns out that for
the latter space of functions defined on a family of cell boundaries, the situation
is more intricate. We construct a uniform parametrisation of the cell boundaries
∂Yx under quite general conditions on the geometry. With this framework at hand,
objects like the distributed trace operator γU(x, y) := γxU(x, ·)(y) are easily con-
structed. Afterwards, the results are applied to a semilinear two-scale reaction–
diffusion system, which has also been discussed in [17] under stronger restrictions
on the cell geometry. Modifying techniques from [14, 9], we prove boundedness,
existence and uniqueness of weak solutions.

We mention some related work for constant microstructure: The analysis of a
similar two-scale reaction–diffusion system has been shown in [10]. Homogenisation
results for a general diffusion–convection–reaction–adsorption system can be found
in [12, 13]. For numerical approaches to two-scale models, see [21, 1, 18]. A huge list
of further references is also given in [11]. We emphasise that in the present paper
and in all of the above cited work, a change of the microstructure w.r.t. time is not
considered. For homogenisation and two-scale models with evolving microstructure,
we refer to [22, 16].

This paper is organised as follows. In section 2, we discuss function spaces on
cell domains. Function spaces on the cell boundaries are treated in section 3. In

1The model (1) corresponds to the regularised-microstructure case in [25].


