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NUMERICAL ANALYSIS OF A HIGHER ORDER TIME
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Abstract. We study the numerical errors in finite element discretizations of a
time relaxation model of fluid motion:

ut + u · ∇u + ∇p − ν∆u + χu∗ = f and ∇ · u = 0

In this model, introduced by Stolz, Adams and Kleiser, u∗ is a generalized

fluctuation and χ the time relaxation parameter. The goal of inclusion of

the χu∗ is to drive unresolved fluctuations to zero exponentially. We study

convergence of discretization of the model to the model’s solution as h, ∆t → 0.

Next we complement this with an experimental study of the effect the time

relaxation term (and a nonlinear extension of it) has on the large scales of a

flow near a transitional point. We close by showing that the time relaxation

term does not alter shock speeds in the inviscid, compressible case, giving

analytical confirmation of a result of Stolz, Adams and Kleiser.
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1. Introduction

A fluid’s velocity at higher Reynolds numbers contains many spatial scales not
economically resolvable on computationally feasible meshes. For this reason, many
turbulence models, large eddy simulation models, numerical regularization and com-
putational stabilizations have been explored in computational fluid dynamics. One
of the simplest such regularization and most recent has been proposed by Adams,
Stoltz and Kleiser [1, 2]. Briefly, if u represents the fluid velocity, h the char-
acteristic mesh width, and δ = O(h) a chosen length scale, let u∗ denote some
representation of the part of u varying over length scales < O(δ), i.e. the fluctu-
ating part of u. (This will be made specific in Section 2.) The fluid regularization
model of Adams, Stoltz and Kleiser, considered herein, arises by adding a simple,
linear, lower order time regularization term, χu∗, (where χ > 0 has units of 1/time)
to the Navier-Stokes equations, giving:

ut + u · ∇u + ∇p − ν∆u + χu∗ = f , ∈ Ω ,(1.1)

∇ · u = 0 , ∈ Ω .(1.2)

The term χu∗ is intended to drive unresolved velocity scales to zero exponentially
fast. Adams, Kleiser and Stoltz have performed extensive computational tests of
this time relaxation model on compressible flows with shocks and on turbulent
flows, for example, [1, 2] as has Guenanff [7] on aerodynamic noise. The originating
study of (1.1),(1.2) was the work of Rosenau [11] and Schochet and Tadmor [12]
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in which the time relaxation model was developed from a regularized Chapman-
Enskog expansion of conservation laws. Most recently, in [10] it was shown that
at high Reynolds number, solutions to (1.1),(1.2), possess an energy cascade which
terminates at the mesh scale δ with the proper choice of relaxation coefficient χ.

Our goal in this report is to connect the work studying (1.1)-(1.2) as a continuum
model with the computational experiments using (1.1)-(1.2) by a numerical analysis
of discretizations of (1.1)-(1.2). We thus consider stability and convergence of
finite element discretizations of (1.1)-(1.2) as h → 0. Our goal is to elucidate
the interconnections between δ, h, χ, ν, and the algorithms used to compute the
fluctuation u∗ as a discrete function.

In Section 2 we give a precise definition of the discrete averaging operator and
the de-convolution procedure that are used to define the generalized fluctuation u∗.
We also give preliminaries about the finite element discretizations studied. Section
3 gives the convergence analysis of this method. This analysis is for ν > 0. The
Euler equations, ν = 0 in (1.1),(1.2), include shocks – a phenomenon excluded when
ν > 0. In Section 5 we complement the case ν > 0 by considering a conservation law
in one space dimension. We show that adding the time relaxation term χu∗ does
not alter shock speeds – thus confirming theoretically a result of Stoltz and Adams
[1]. In Section 4 we give some numerical tests. Our primary goal in these tests is
to study the effect the time relaxation term has on O(1) scales. We study a flow
very close to its transition from one regime to another: from equilibrium to time
dependent via eddy shedding behind the forward-backward step. We investigate
experimentally which of several natural formulations of this time relaxation term
least retards this transition.

2. Analysis of the Time Relaxation Model

In order to discuss the effects of the regularization we introduce the following
notation. The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·).
Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp

and ‖ · ‖W k
p
, respectively. For the semi-norm in W k

p (Ω) we use | · |W k
p
. Hk is used to

represent the Sobolev space W k
2 , and ‖ · ‖k denotes the norm in Hk. For functions

v(x, t) defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(t, ·)‖k , and ‖v‖m,k :=

(

∫ T

0

‖v(t, ·)‖m
k dt

)1/m

.

The following function spaces are used in the analysis:

Velocity Space : X := H1
0 (Ω) ,

Pressure Space : P := L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

q dΩ = 0

}

,

Divergence − free Space : Z :=

{

v ∈ X :

∫

Ω

q∇ · v dΩ = 0, ∀ q ∈ P

}

.

We denote the dual space of X as X ′, with norm ‖ · ‖−1.
A variational solution of the N-S equations may be stated as: Find w ∈ L2(0, T ;X)∩

L∞(0, T ;L2(Ω)), r ∈ L2(0, T ;P ) with wt ∈ L2(0, T ;X
′

) satisfying

(wt,v) + (w · ∇w,v) − (r,∇ · v) + ν(∇w,∇v) = (f ,v) , ∀v ∈ X ,(2.1)

(q,∇ · w) = 0 , ∀q ∈ P ,(2.2)

w(0,x) = w0(x) , ∀x ∈ Ω .(2.3)


