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SHOOTING METHODS FOR NUMERICAL SOLUTIONS OF

EXACT CONTROLLABILITY PROBLEMS CONSTRAINED BY

LINEAR AND SEMILINEAR 2-D WAVE EQUATIONS
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Abstract. Numerical solutions of exact controllability problems for linear and

semilinear 2-d wave equations with distributed controls are studied. Exact

controllability problems can be solved by the corresponding optimal control

problems. The optimal control problem is reformulated as a system of equa-

tions (an optimality system) that consists of an initial value problem for the

underlying (linear or semilinear) wave equation and a terminal value problem

for the adjoint wave equation. The discretized optimality system is solved

by a shooting method. The convergence properties of the numerical shooting

method in the context of exact controllability are illustrated through compu-

tational experiments.
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1. Introduction

In this paper, we consider an optimal distributed control approach for solving the
exact distributed controllability problem for two-dimensional linear or semilinear
wave equations defined on a time interval (0, T ), and spatial domain Ω in R

2. The
exact distributed controllability problem we consider is to seek a distributed control
f in L2((0, T ) × Ω) and a corresponding state u such that the following system of
equations hold:

(1.1)






utt − ∆u + Ψ(u) = f in Q ≡ (0, T ) × Ω ,

u|t=0 = w and ut|t=0 = z in Ω ,

u|t=T = W and ut|t=T = Z in Ω ,

u|∂Ω = 0 in (0, T ) ,

where w and z are given initial conditions defined on Ω, W ∈ L2(Ω) and Z ∈
H−1(Ω) are prescribed terminal conditions, f in L2((0, T ) × Ω) is the distributed
control, and Ψ(u) is a given function on R.

The exact boundary controllability problems are well known for linear and semi-
linear cases; see e.g.,[5, 14, 15, 17, 18, 20, 21, 23, 24]. In these problems there are
basically two classes of computational methods in the literature. The first class is
known Hilbert Uniqueness Method (HUM); see, e.g., [9, 11, 14, 16, 22]. The ap-
proximate solutions obtained by the HUM-based methods in general do not seem
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to converge (even in a weak sense) to the exact solutions as the temporal and
spatial grid sizes tend to zero. Methods of regularization including Tychonoff regu-
larization and filtering that result in convergent approximations were introduced in
those papers on HUM-based methods. The second class of computational methods
for boundary controllability of the linear wave equation was those based on the
method proposed in [10]. One solves a discrete optimization problem that involves
the minimization of the discrete boundary L2 norm subject to the undetermined
linear system of equations formed by the discretization of the wave equation and
the initial and terminal conditions. This approach was implemented in [8]. The
computational results demonstrated the convergence of the discrete solutions when
the exact minimum boundary L2 norm solution is smooth. In the generic case of a
non-smooth exact minimum boundary L2 norm solution the computational results
of [8] exhibited at least a weak L2 convergence of the discrete solutions.

In this paper we develop an alternate numerical method which allows us to apply
distributed or boundary control to the exact controllability problems. Ultimately
we test the exact boundary controllability problems, but it is beyond the work, and
we will present the result in a separate paper. The results in [19] were limited to the
one dimensional case. In this paper, we extend those results to the two dimensional
case.

We will study numerical methods for optimal control and controllability prob-
lems associated with the linear and semilinear wave equations. We are particu-
larly interested in investigating the relevancy and applicability of high performance
computing (HPC) for these problems. As a prototype example of optimal control
problems for the wave equations we consider the following distributed optimal con-
trol problem: choose a control f and a corresponding u such that the pair (u, f)
minimizes the cost functional

J (u, f) =
α

2

∫ T

0

∫

Ω

K(u) dx dt +
β

2

∫

Ω

Φ1(u(T,x)) dx +
γ

2

∫

Ω

Φ2(ut(T,x)) dx

+
1

2

∫ T

0

∫

Ω

|f |2 dx dt

(1.2)

subject to the wave equation

(1.3)






utt − ∆u + Ψ(u) = f in Q ≡ (0, T ) × Ω ,

u|∂Ω = 0, in (0, T ) ,

u(0,x) = w(x) and ut(0,x) = z(x) in Ω .

Here Ω is a bounded spatial domain in R
d (d = 1 or 2 or 3) with a boundary ∂Ω; f

is a distributed control and u is the corresponding state. Also, K, Φ and Ψ are C1

mappings (for instance, we may choose K(u) = (u−U)2, Ψ(u) = 0, Ψ(u) = u3 − u
and Ψ(u) = eu, Φ1(u) = (u(T,x)−W )2, Φ2(u) = (ut(T,x)−Z)2, where U,W,Z are
target functions). Moreover we assume that initial conditions w and z are smooth
enough to be well defined the given problem; see e.g.,[4]. Also we suppose that
nonlinearity Ψ(u) does not alter the regularity of the solution in the wave equation.

Of particular interest to us is the case of large α, β and γ; our computational
experiments of the proposed numerical method will be performed exclusively for
this case. Our interest in this case stems from the fact that the optimal control
problem can be viewed as an approximation to the exact distributed controllability
problem (1.1).

Such control problems are classical ones in the control theory literature; see, e.g.,
[12] for the linear case and [13] for the nonlinear case regarding the existence of


