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AN EXTENDED DOMAIN METHOD FOR OPTIMAL
BOUNDARY CONTROL FOR NAVIER-STOKES EQUATIONS

SANDRO MANSERVISI

Abstract. The matching velocity problem for the steady-state Navier-Stokes

system is considered. We introduce an extended domain method for solving

optimal boundary control problems. The Lagrangian multiplier method is ap-

plied to the extended domain with distributed controls and used to determine

the optimality system and the control over the boundary of the inner domain.

The existence, the differentiability and the optimality system of the optimal

control problem are discussed. With this method inflow controls are shown to

be numerical reliable over a large admissible control set. Numerical tests for

steady-state solutions are presented to prove the effectiveness and robustness

of the method for flow matching.
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1. Introduction

Optimal boundary control problems associated with the Navier-Stokes equations
have a wide and important range of applications such as the design of cars, air-
planes and jet engines. Despite the fact that this field has been extensively studied,
determining the best boundary control or even a simple effective boundary control
for a system governed by the Navier-Stokes equations is still a difficult and time
consuming task.

Early studies devoted to optimal boundary control problems for the Navier-
Stokes equations can be found, for example, in [1, 8, 15, 16]. The optimal control of
the Navier-Stokes equations shows many challenges and has been considered by nu-
merous authors (see for exanple [4, 6, 9, 13, 35, 14, 20, 18, 19, 20, 21, 22, 23, 24, 25,
28, 38] and citations therein). The theoretical treatment of optimal boundary prob-
lems concerning with questions of existence, regularity of solutions, and differentia-
bility properties is in some extent satisfactory but the numerical implementation,
the analysis, and the consistency of discrete approximations still remain fundamen-
tal issues. Many results generally lack a coherent first-order necessary condition
and often the regularity assumed cannot be used in numerical algorithms. Other
papers deal with re-formulations of the problem, mainly to simplified situations
with finite dimension controls.

In order to simplify the description of the problem we consider the two-dimensional
steady-state incompressible flow of a viscous fluid with Dirichlet boundary condi-
tions in a region Ω with boundary Γ as shown on the left of Figure 1. The velocity
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~u and the pressure p satisfy the stationary Navier-Stokes system

−ν4~u + (~u · ∇)~u +∇p = ~h in Ω(1)
∇ · ~u = 0 in Ω(2)

along with the Dirichlet boundary conditions

(3) ~u = ~g =
{

0 on Γ1

~g on Γc ,

where ~h is the given body force. In (1) ν denotes the inverse of the Reynolds
number whenever the variables are appropriately nondimensionalized.

Along the uncontrolled part of boundary boundary Γ1 the velocity vanishes and
the function ~g must satisfy the compatibility condition

(4)
∫

Γ

~g · ~n ds = 0

where ~n is the unit normal vector along the surface Γ. If some other types of
boundary conditions, e.g., natural boundary conditions or outflow boundary con-
ditions, are specified along the left or right or bottom boundaries, the results given
in this paper are formally valid but some technical details in the analysis should be
carefully revised. There is a substantial literature discussing the set of all possible
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Figure 1. The flow domain Ω. Γc denotes the part of the bound-
ary whose velocity is to be determined by the optimization process.

boundary controls. Clearly, the function ~g must belong to H1/2(Γc), the Sobolev
space of order 1/2. However H1/2(Γc) or H1(Γc) may not be sufficient to enable
one to explicitly derive a first-order necessary condition or implement numerically
the boundary control. Thus in general the set of all admissible controls ~g must be
restricted to more regular spaces, namely, to belong to H3/2(Γc).

One could examine several practical objective functionals for determining the
boundary controls, e.g., the reduction of the drag due to viscosity or the identifica-
tion of the velocity at a fixed vertical slit downstream. To fix ideas, we focus on the
minimization of the cost functional that leads to matching velocity problems. In
literature the steady optimal control problem is formulated by using the following
functional (see for example [1, 25])

(5) J (~u,~g) =
1
2

∫

Ω

(~u− Û)2 d~x +
β

2

∫

Γc

(α~g 2
s + ~g 2) dx ,


