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Abstract. In this paper we analyze several first-order systems of Oseen-type

equations that are obtained from the time-dependent incompressible Navier-

Stokes equations after introducing the additional vorticity and possibly total

pressure variables, time-discretizing the time derivative and linearizing the non-

linear terms. We apply the [L2, L2, L2] least-squares finite element scheme to

approximate the solutions of these Oseen-type equations assuming homoge-

neous velocity boundary conditions. All of the associated least-squares energy

functionals are defined to be the sum of squared L2 norms of the residual equa-

tions over an appropriate product space. We first prove that the homogeneous

least-squares functionals are coercive in the H1
× L2

× L2 norm for the veloc-

ity, vorticity, and pressure, but only continuous in the H1
×H1

×H1 norm for

these variables. Although equivalence between the homogeneous least-squares

functionals and one of the above two product norms is not achieved, by using

these a priori estimates and additional finite element analysis we are neverthe-

less able to prove that the least-squares method produces an optimal rate of

convergence in the H1 norm for velocity and suboptimal rate of convergence

in the L2 norm for vorticity and pressure. Numerical experiments with various

Reynolds numbers that support the theoretical error estimates are presented.

In addition, numerical solutions to the time-dependent incompressible Navier-

Stokes problem are given to demonstrate the accuracy of the semi-discrete

[L2, L2, L2] least-squares finite element approach.
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1. Problem formulation

As a first step towards the finite element solution of the time-dependent incom-
pressible Navier-Stokes problem by using the least-squares principles, in this paper
we analyze the [L2, L2, L2] least-squares finite element approximations to several
first-order systems of Oseen-type equations all equipped with the homogeneous ve-
locity boundary conditions. These systems are obtained from the time-dependent
incompressible Navier-Stokes problem after introducing the additional vorticity and
possibly total pressure variables, time-discretizing the time derivative and lineariz-
ing the non-linear terms.
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We start with the derivation of these first-order Oseen-type problems and intro-
duce some background and notations. Let Ω be an open bounded and connected
domain in R

N (N = 2 or 3) with Lipschitz boundary ∂Ω. The time-dependent
incompressible Navier-Stokes problem on the bounded domain Ω can be posed as
the following initial-boundary value problem (cf. [13, 14, 15]):

Find u(x, t) : Ω × [0, T ] → R
N and p(x, t) : Ω × [0, T ] → R such that

(1.1)

∂u

∂t
− 1

λ
∆u + (u · ∇)u + ∇p = f in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),
u = 0 on ∂Ω × [0, T ],

u(·, 0) = u0(·) in Ω,

where the symbols ∆, ∇ and ∇· stand for the Laplacian, gradient and divergence
operators with respect to the spatial variable x, respectively; u = (u1, · · · , uN )⊤ is
the velocity vector; p is the pressure; λ ≥ 1 is the Reynolds number and may be
identified with the inverse viscosity constant 1/ν; [0, T ] is the time interval under
consideration; f = (f1, · · · , fN )⊤ : Ω × (0, T ) → R

N is a given vector function rep-
resenting the density of body force; the initial velocity u0 : Ω → R

N with u0 = 0

on ∂Ω is prescribed. All of them are assumed to be non-dimensionalized.

We now introduce some notations that are used throughout the article. When
N = 2, we define the curl operator, ∇×, with respect to the spatial variable x for
a smooth scalar function v by

∇× v =
(∂v

∂y
,−∂v

∂x

)⊤
,

and for a smooth 2-component vector function v = (v1, v2)
⊤ by

∇× v =
∂v2

∂x
− ∂v1

∂y
.

When N = 3, we define the curl of a smooth 3-component vector function v =
(v1, v2, v3)

⊤ by

∇× v =
(∂v3

∂y
− ∂v2

∂z
,
∂v1

∂z
− ∂v3

∂x
,
∂v2

∂x
− ∂v1

∂y

)⊤
.

We also define the following cross products. If w is a scalar function and v =
(v1, v2)

⊤, then

w × v = −v × w = (−wv2, wv1)
⊤.

If w = (w1, w2, w3)
⊤ and v = (v1, v2, v3)

⊤, then

w × v = (w2v3 − w3v2, w3v1 − w1v3, w1v2 − w2v1)
⊤.

With these notations, it can be easily checked that the following identities hold: for
a smooth vector function u = (u1, · · · , uN )⊤,

(1.2) ∇× (∇× u) = −∆u + ∇(∇ · u)

and

(1.3) (w × v) · v = 0

for w = (w1, · · · , w2N−3)
⊤ and v = (v1, · · · , vN )⊤.

Introducing the additional vorticity variable ω (cf. [2, 7, 10]),

ω = ∇× u on Ω × [0, T ],


