
INTERNATIONAL JOURNAL OF c© 2007 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 4, Number 3-4, Pages 368–391

REDUCED ORDER MODELING OF SOME NONLINEAR
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
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Abstract. Determining accurate statistical information about outputs from

ensembles of realizations is not generally possible whenever the input-output

map involves the (computational) solution of systems of nonlinear partial dif-

ferential equations (PDEs). This is due to the high cost of effecting each re-

alization. Recently, in applications such as control and optimization that also

require multiple solutions of PDEs, there has been much interest in reduced-

order models (ROMs) that greatly reduce the cost of determining approximate

solutions. We explore the use of ROMs for determining outputs that depend

on solutions of stochastic PDEs. One is then able to cheaply determine much

larger ensembles, but this increase in sample size is countered by the lower

fidelity of the ROM used to approximate the state. In the contexts of proper

orthogonal decomposition-based ROMs, we explore these counteracting effects

on the accuracy of statistical information about outputs determined from en-

sembles of solutions.
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1. Introduction

Realistic simulations of complex systems governed by nonlinear partial differen-
tial equations must account for the “noisy” features of the modeled phenomena,
such as material properties, coefficients, domain geometry, excitations and bound-
ary data. “Noise” can be understood as uncertainties in the specification of the
physical model; because of noise, the behavior of a complex system is at least par-
tially unpredictable. A simulation can attempt to capture the noisy aspects of a
system by describing the simulation input data as random fields. This turns the
problem into a stochastic partial differential equation (SPDE). We will consider
such problems, characterized by nonlinear partial differential equations, and for
which the input data are not purely deterministic; for example, the coefficients or
the right-hand-side of the partial differential equation may be regarded as sums of
a deterministic and stochastic function.

For a given system, various stochastic perturbation techniques have been consid-
ered [1,2,4–6,16,19,36,64,65]. This paper will focus on nonlinear SPDE’s in which
the stochastic inputs are modeled as white noise, i.e., they are not significantly
correlated. The aim of our work is to efficiently determine statistical information
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about the random field u = u(t,x;ω) from numerical approximations of the non-
linear SPDE driven by white noise:

(1.1)
du
dt

= Au− γN(u) + g + ε
dW
dt

, x ∈ D, ω ∈ Ω, t > 0.

Here D ⊂ RN is a convex, bounded and polygonal spatial domain, (Ω,F ,P) is
a probability space described in section 2, and A is a linear second-order elliptic
operator with deterministic coefficients, defined on a space of functions satisfying
certain boundary conditions, N(u) is a nonlinear function of the random process
u, g represents a deterministic function and W denotes an infinite dimensional
Brownian motion or Wiener process. The additive noise that appears in (1.1) is
in the form of space-time Brownian white noise as described in section 2.1. The
amplitudes of the noise and the nonlinearity are controlled by parameters ε and γ,
respectively. Once the equation is reformulated into a weak form, the usual Galerkin
finite element approach can be used to produce a discretized system suitable for
solution on a computer.

Generally, obtaining precise statistics about ensembles of realizations of nonlin-
ear SPDEs such as (1.1) entails a high cost in both memory and CPU. This cost
is exhibited in many recent attempts on similar problems [9, 13, 26, 27]. Even with
the use of reliable nonlinear solvers and carefully chosen solution schemes, these
computations involve formidable work. Typical finite element codes may require
the use of many thousands of degrees of freedom for the accurate simulation of
deterministic PDEs. The situation becomes far worse when the same techniques
are extended to SPDEs [20] for which multiple realizations are usually required.

It is natural to consider a reduced-order model (ROM), such as [10, 11]. A
reduced-order model attempts to determine acceptable approximate solutions of a
PDE while using very few degrees of freedom. One way to achieve this efficiency is
for the models to use basis functions that are in some way intimately connected to
the problem being solved. Once a low-dimensional reduced basis has been deter-
mined, it may be used in a new Galerkin system to solve related instances of the
PDE. In this way, a ROM may be used to efficiently explore the behavior of large
ensembles of PDE solutions. This is the kind of efficiency needed when attempting
to compute realistic statistics from outputs of the SPDE.

There have been many reduced-order modeling techniques proposed; see [10,11,
33,37] and the references cited therein. The most popular reduced-order modeling
approach for nonlinear PDEs is based on proper orthogonal decomposition (POD)
analysis. POD begins with a set of m̃ precomputed solutions of the equation, often
called snapshots; these could be generated by evaluating the computational solution
of a transient problem at many instants of time or over a range of values of the
problem parameters. These solutions are presumably obtained using costly, large-
scale, high-fidelity codes. The K-dimensional POD basis is then formed from the K
eigenvectors corresponding to the dominant eigenvalues of the snapshot correlation
matrix. This basis may then be used to construct a new finite element system of
much reduced order, suitable for generating approximate solutions, at least within
a limited range of the underlying snapshot data. POD-based model reduction
has been applied with some success to several problems, most notably in fluid
mechanics. For detailed discussions, one may consult [3,7,8,10–12,17,25,28,29,32–
34,43–48,50–54,59,60,62,63].

The efficiency of a POD basis comes from its low dimension combined with its
good approximating power. However, the ability of a POD-based basis to approxi-
mate the state of a system is totally dependent on the information contained in the


