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ERROR ANALYSIS OF

AN IMMERSED FINITE ELEMENT METHOD

FOR TIME-DEPENDENT BEAM INTERFACE PROBLEMS

MIN LIN

Abstract. This article presents an error analysis of a Hermite cubic immersed finite element (IFE)

method for solving certain initial-boundary value problems (IBVP) modeling a time-dependent
Euler-Bernoulli beam formed by multiple materials together with suitable jump conditions at
material interfaces. The optimal convergence of this IFE method is shown by both theoretical

proof and numerical simulations.
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1. Introduction

In this paper, we present an error analysis of a Hermite cubic immersed finite
element (IFE) method for solving interface problems related to a mathematical
model for a time-dependent Euler-Bernoulli beam formed with multiple materials.
Without loss of generality, we consider a beam of length 1 formed with two materi-
als, and we assume its dynamics is modeled by the following initial-boundary value
problem (IBVP) [23]:

ρ(x)utt(x, t) +
(
β(x)uxx(x, t)

)
xx

= f(x, t), x ∈ (0, 1)\{α}, t ∈ (0, T ],(1a)

u(0, t) = b1(t), ux(0, t) = b2(t), u(1, t) = b3(t), ux(1, t) = b4(t),(1b)

u(x, 0) = g1(x), ut(x, 0) = g2(x),(1c)

and the rigid connection condition across the material interface α as follows:

[
u(x, t)

]
x=α

= 0, (continuity in the deflection),[∂u(x, t)
∂x

]
x=α

= 0, (continuity in the bending angle),[
β(x)

∂2u(x, t)
∂x2

]
x=α

= 0, (continuity of the bending moment),

[∂(β(x)∂2u(x, t)∂x2
)

∂x

]
x=α

= 0, (continuity of the shear),

(1d)

where u(x, t) is the transverse displacement of the beam at time t and longitudinal
coordinate x, ρ(x) is the mass density, β(x) is the bending modulus or stiffness
parameter, and f(x, t) is the distributed loading force. Note that [w(x, t)]x=α :=
lim

x→α+
w(x, t)− lim

x→α−
w(x, t). For simplicity, we assume that the material parameters
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ρ(x) and β(x) are both piecewise positive constant functions:

ρ(x) =

{
ρ−, x ∈ Ω−,

ρ+, x ∈ Ω+,
(1e)

β(x) =

{
β−, x ∈ Ω−,

β+, x ∈ Ω+,
(1f)

where Ω = (0, 1), Ω− = (0, α), Ω+ = (α, 1) and α ∈ Ω is the interface position of the
two materials. In the discussion from now on, we let ρmin := min{ρ−, ρ+}, ρmax :=
max{ρ−, ρ+} and βmax := max{β−, β+}, βmin := min{β−, β+}.

IFE methods are desirable for solving interface problems with a mesh indepen-
dent of the discontinuity of the coefficients associated with the material interfaces in
the differential equations. The author of [8] introduced an IFE method for solving
an interface problem of a two point boundary value problem. Afterwards, authors
of [21, 11, 9, 2, 6, 15, 22, 7, 18, 14, 16, 1, 5, 10, 17, 19] developed IFE methods for
solving elliptic interface problems, some time-dependent interface problems, Stokes
interface problems as well as elasticity interface problems and so on. In particular,
a Hermite cubic IFE space was developed in [13, 23] for solving interface problems
of the 4-th order differential equations modeling a static Euler-Bernoulli beam and
numerical examples were provided in those articles to show the optimal convergence
of the related IFE method. A recent followup article [12] carried out an error anal-
ysis proving the optimal approximation capability for the Hermite cubic IFE space
developed in [13, 23] and the optimal convergence of the numerical solution for
the static Euler-Bernoulli beam produced in this IFE space by the usual Galerkin
finite element scheme. However, so far there has been no error analysis for the
IFE method developed in [23] to solve the time-dependent Euler-Bernoulli Beam
interface problem, and this promotes us in this article to extend the error analysis
reported in [12] to this fully discrete IFE method.

In the error analysis to be presented later, the standard Sobolev space defined
on an open set D ⊆ Ω will be used: for every integer m ≥ 0,

Hm(D) = {w(x) | w(j) ∈ L2(D), j = 0, 1, · · · ,m},(2)

on which we have the following norm and semi-norm:

∥w∥Hm(D) =

√√√√ m∑
j=0

∥∥w(j)
∥∥2
L2(D)

, |w|Hm(D) =
∥∥∥w(m)

∥∥∥
L2(D)

, ∀w ∈ Hm(D).(3)

Also, we will use the following related Sobolev space: for every integer m ≥ 1,

Hm
0 (D) = {w(x) ∈ Hm(D) | w(j)|∂D = 0, j = 0, 1, · · · ,m− 1}.(4)

In the case when α ∈ D, we let D± = D ∩ Ω± and we will consider the following
space:

H̃m(D) = {w(x) | w|D± ∈ Hm(D±)},(5)

which is endowed with the following norm and semi-norm:
∥w(x)∥H̃m(D) =

√
∥w∥2Hm(D−) + ∥w∥2Hm(D+)

|w(x)|H̃m(D) =
√

|w|2Hm(D−) + |w|2Hm(D+)

∀w ∈ H̃m(D).(6)


