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IMPROVED ERROR ESTIMATION FOR THE PARTIALLY

PENALIZED IMMERSED FINITE ELEMENT METHODS FOR

ELLIPTIC INTERFACE PROBLEMS

RUCHI GUO, TAO LIN AND QIAO ZHUANG

Abstract. This paper is for proving that the partially penalized immersed finite element (PPIFE)
methods developed in [25] converge optimally under the standard piecewise H

2 regularity assump-
tion for the exact solution. In energy norms, the error estimates given in this paper are better
than those in [25] where a stronger piecewise H

3 regularity was assumed. Furthermore, with the
standard piecewise H

2 regularity assumption, this paper proves that these PPIFE methods also
converge optimally in the L

2 norm which could not be proved in [25] because of the excessive H
3

regularity requirement.
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1. Introduction

In this article, we establish better error estimates for the numerical solutions
generated by the partially penalized immersed finite element (PPIFE) methods
[25] for the interface problem governed by the second-order elliptic equation:

−∇ · (β∇u) = f, in Ω− ∪ Ω+,(1a)

u = 0, on ∂Ω,(1b)

where, without loss of generality, the domain Ω ⊆ R2 is divided by an interface curve
Γ into two subdomains Ω− and Ω+, and the coefficient β is a piecewise positive
constant function such that

β(X) =

{

β− for X ∈ Ω−,
β+ for X ∈ Ω+.

In addition, the exact solution u satisfies the following jump conditions across the
interface

[u]Γ := u−|Γ − u+|Γ = 0,(2)
[

β∇u · n
]

Γ
:= β−∇u− · n|Γ − β+∇u+ · n|Γ = 0,(3)

where n is the unit normal vector to the interface Γ. For the sake of simplicity, as
in [25], we assume the interface Γ is a C2-curve and does not intersect ∂Ω.

The immersed finite element (IFE) method is developed to solve the interface
problem (1)-(3) on an interface independent mesh, if desirable, a simple struc-
tured (Cartesian) mesh can be used. The key idea of this method is to utilize
Hsieh-Clough-Tocher type macro polynomials [3, 6], i.e., the piecewise polynomials
constructed according to the jump conditions on interface elements to capture the
jump behaviors of the exact solutions [2, 9, 16, 22], while standard polynomials are
used on all the non-interface elements. The global IFE functions such as those used
in [16, 22, 25] are, in general, not continuous across the interface edges, even though
the continuity at the mesh nodes is imposed. The partially penalized IFE (PPIFE)
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methods developed in [25] employed the interior penalties [8] on interface edges to
control the adverse effects from those discontinuities so that these PPIFE methods
converge optimally in a certain energy norm. Penalties are also used in Cut-FEMs
[4, 14] mainly for enhancing jump conditions across the interface. IFE methods for
interface problems associated with other types of PDEs or jump conditions as well
as the applications can be found in [1, 5, 10, 11, 17, 18, 19, 20, 21, 23, 24, 26, 28],
to name just a few.

The authors in [25] employed a piecewise H3 regularity assumption for the exact
solution to the interface problem to prove the optimal convergence of the PPIFE
solutions. However, given the body force term f ∈ L2(Ω), the exact solution to
(1)-(3) only has the piecewise H2 regularity [7] in general. This motivates us to
investigate whether the PPIFE methods developed in [25] can converge optimally
under the standard piecewise H2 regularity assumption instead of the excessive
piecewise H3 regularity. Towards this goal, we introduce a new energy norm that
is stronger than the one used in [25]. Inspired by [13], we derive an estimate
for the IFE interpolation error gauged by this energy norm on a patch of each
interface element. Furthermore, the bilinear form in the PPIFE method has both
the continuity and coercivity in this energy norm. These properties enable us to
derive an error bound for the PPIFE solution in the energy norm under the standard
piecewise H2 regularity assumption. As an important consequence, the improved
estimation further enables us to show the optimal convergence in the L2 norm,
which, to our best knowledge, has not been established in the literature for the
PPIFE methods.

This article consists of four additional sections. The next section reviews some
notations from [25] which will be also used in this article. In Section 3, we introduce
the patches for the interface elements and recover the approximation capabilities
of IFE spaces on these patches. In Section 4 we show the optimal convergence of
the PPIFE solutions. Finally, we make some conclusions in Section 5.

2. Notations and IFE Spaces

We herein adopt some notations from [25]. For every measurable open set Ω̃ ⊆ Ω,

we let Ω̃s := Ω̃ ∩ Ωs, s = ±, and we let W k,p(Ω̃) be the standard Sobolev space

on Ω̃ with the standard norm ‖ · ‖k,p,Ω̃ and the semi-norm |v|k,p,Ω̃. When Ω̃s 6= ∅,
s = ±, we let the related Sobolev norms and semi-norms be

‖ · ‖2
k,p,Ω̃

= ‖ · ‖2
k,p,Ω̃−

+ ‖ · ‖2
k,p,Ω̃+ , | · |2

k,p,Ω̃
= | · |2

k,p,Ω̃−
+ | · |2

k,p,Ω̃+ .

Furthermore, we introduce the following spaces on Ω̃ in the case Ω̃s 6= ∅, s = ±:

PW k,p(Ω̃) = {u : u|Ω̃s ∈W k,p(Ω̃s), s = ±; [u] = 0, [β∇u · nΓ] = 0 on Γ ∩ Ω̃},

for suitable k and p such that involved qualities on Γ∩Ω̃ are well defined. As usual,
we will drop p from the pertinent norms and semi-norms for Hk(Ω̃) =W k,2(Ω̃) and

PHk(Ω̃) = PW k,2(Ω̃).
We let Th be a triangular or a rectangular mesh for the domain Ω ⊂ R2 and let

Nh be the collection of the nodes in the mesh Th. We denote the sets of interface
elements and non-interface elements by T i

h and T n
h . Also, we denote the set of

interior edges by E̊h, the interior interface edges by E̊ i
h and the interior non-interface

edges by E̊n
h , respectively. For each element T ∈ Th, we define its index set as

IT = {1, 2, 3} when T is triangular, but IT = {1, 2, 3, 4} when T is rectangular.
Given each T , let Ai, i ∈ IT be the vertices of T , and the interface partitions the


