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AN OPTIMAL EDG METHOD FOR DISTRIBUTED CONTROL

OF CONVECTION DIFFUSION PDES

XIAO ZHANG, YANGWEN ZHANG, AND JOHN R. SINGLER

Abstract. We propose an embedded discontinuous Galerkin (EDG) method to approximate
the solution of a distributed control problem governed by convection diffusion PDEs, and obtain

optimal a priori error estimates for the state, dual state, their fluxes, and the control. Moreover,
we prove the optimize-then-discretize (OD) and discrtize-then-optimize (DO) approaches coincide.

Numerical results confirm our theoretical results.
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1. Introduction

We study the following distributed optimal control problem:

min J(u) =
1

2
‖y − yd‖2L2(Ω) +

γ

2
‖u‖2L2(Ω), γ > 0,(1)

subject to

−∆y + β · ∇y = f + u in Ω,

y = g on ∂Ω,
(2)

where Ω ⊂ Rd (d ≥ 2) is a Lipschitz polyhedral domain with boundary Γ = ∂Ω,
f ∈ L2(Ω), g ∈ C0(∂Ω), and the vector field β satisfies

∇ · β ≤ 0.(3)

Optimal control problems for convection diffusion equations have been exten-
sively studied using many different finite element methods, such as standard finite
elements [11–13], mixed finite elements [13, 35, 39], discontinuous Galerkin (DG)
methods [16, 21, 33, 34, 36, 40, 41] and hybrid discontinuous Galerkin (HDG) meth-
ods [17, 18]. HDG methods were first introduced by Cockburn et al. in [4] for
second order elliptic problems, and they have subsequently been applied to many
other problems [2, 3, 5, 7, 8, 23–26, 32]. HDG methods keep the advantages of DG
methods, but have a lower number of globally coupled degrees of freedom com-
pared to mixed methods and DG methods. However, the degrees of freedom for
HDG methods is still larger compared to standard finite element methods. Embed-
ded discontinuous Galerkin (EDG) methods were first proposed in [15], and then
analyzed in [6]. EDG methods are obtained from the HDG methods by forcing the
numerical trace space to be continuous. This simple change significantly reduces
the number of degrees of freedom and make EDG methods competitive for flow
problems [27] and many other applications [9, 10,19,27,29].

In [38], we utilized an EDG method for a distributed optimal control problem
for the Poisson equation. We obtained optimal convergence rates for the state,
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dual state and the control, but suboptimal convergence rates for their fluxes. This
suboptimal flux convergence rate for the Poisson equation is a limitation of the
EDG method with equal order polynomial degrees for all variables [6]. However,
Zhang, Xie, and Zhang recently proposed a new EDG method and proved optimal
convergence rates for all variables for the Poisson equation [37]. This new EDG
method is obtained by simply using a lower degree finite element space for the flux.
In this work, we use this new EDG method to approximate the solution of the
above convection diffusion distributed optimal control problem, and in Section 3
we prove optimal convergence rates for all variables.

There are two main approaches to compute the numerical solution of PDE con-
strained optimal control problems: the optimize-then-discretize (OD) and discretize-
then-optimize (DO) approaches. In the OD approach, one first derives the first-
order necessary optimality conditions, then discretizes the optimality system, and
then solves the resulting discrete system by utilizing efficient iterative solvers [31].
In the DO approach, one first discretizes the PDE optimization problem to obtain
a finite dimensional optimization problem, which is then solved by existing opti-
mization algorithms, such as [1,28]. The discretization methods for which these two
approaches coincide are called commutative. Intuitively, the DO approach is more
straightforward in practice; however, not all discretization schemes are commuta-
tive. In the non-commutative case, the DO approach may result in badly behaved
numerical results; see, e.g., [20, 22]. Therefore, devising commutative numerical
methods is very important. In Section 2, we prove the EDG method studied here
is commutative for the convection diffusion distributed control problem. Moreover,
we provide numerical examples to confirm our theoretical results in Section 4.

2. EDG scheme for the optimal control problem

2.1. Notation. Throughout the paper we adopt the standard notation Wm,p(Ω)
for Sobolev spaces on Ω with norm ‖ · ‖m,p,Ω and seminorm | · |m,p,Ω . We denote
Wm,2(Ω) by Hm(Ω) with norm ‖·‖m,Ω and seminorm | · |m,Ω. Specifically, H1

0 (Ω) =
{v ∈ H1(Ω) : v = 0 on ∂Ω}. We denote the L2-inner products on L2(Ω) and L2(Γ)
by

(v, w) =

∫
Ω

vw ∀v, w ∈ L2(Ω),

〈v, w〉 =

∫
Γ

vw ∀v, w ∈ L2(Γ).

Define the space H(div,Ω) as

H(div,Ω) = {v ∈ [L2(Ω)]d,∇ · v ∈ L2(Ω)}.
Let Th be a collection of disjoint elements that partition Ω. We denote by ∂Th

the set {∂K : K ∈ Th}. For an element K of the collection Th, let e = ∂K∩Γ denote
the boundary face of K if the d − 1 Lebesgue measure of e is non-zero. For two
elements K+ and K− of the collection Th, let e = ∂K+ ∩ ∂K− denote the interior
face between K+ and K− if the d − 1 Lebesgue measure of e is non-zero. Let εoh
and ε∂h denote the set of interior and boundary faces, respectively. We denote by
εh the union of εoh and ε∂h. We finally introduce

(w, v)Th =
∑

K∈Th

(w, v)K , 〈ζ, ρ〉∂Th =
∑

K∈Th

〈ζ, ρ〉∂K .


