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IMPROVED ERROR ESTIMATES OF A FINITE

DIFFERENCE/SPECTRAL METHOD FOR TIME-FRACTIONAL

DIFFUSION EQUATIONS

CHUNWAN LV AND CHUANJU XU∗

Abstract. In this paper, we first consider the numerical method that Lin and Xu proposed and
analyzed in [Finite difference/spectral approximations for the time-fractional diffusion equation,
JCP 2007] for the time-fractional diffusion equation. It is a method basing on the combination
of a finite different scheme in time and spectral method in space. The numerical analysis carried
out in that paper showed that the scheme is of (2 − α)-order convergence in time and spectral
accuracy in space for smooth solutions, where α is the time-fractional derivative order. The main
purpose of this paper consists in refining the analysis and providing a sharper estimate for both
time and space errors. More precisely, we improve the error estimates by giving a more accurate
coefficient in the time error term and removing the factor in the space error term, which grows
with decreasing time step. Then the theoretical results are validated by a number of numerical
tests.
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1. Introduction

As a powerful tool in modelling the phenomenon related to nonlocality and
spatial heterogeneity, the fractional partial differential equations (FPDE for short
hereafter) has been attracting increasing attention in recent years. They are now
finding its many applications in a broad range of fields such as control theory,
biology, electrochemical processes, viscoelastic materials, polymer, finance, and etc;
see, e.g.,[1, 2, 4, 5, 6, 8, 9, 12, 13, 19, 23, 25] and the references therein.

Similar to the role of the heat equation in traditional modelling, the time-
fractional diffusion equation considered in this paper is of importance not only in
its own right, but also it constitutes the kernel of many other more general FPDE.
This model equation governs the evolution for the probability density function that
describes anomalously diffusing particles. For some fractional models, we mention,
e.g., the chaotic dynamics charge transport problem in amorphous semiconductors
[26, 27], the NMR diffusometry in disordered materials [20], the dynamics of a
bead in polymer network [3], and the propagation of mechanical diffusive waves in
viscoelastic media [18]. For more applications where the time-fractional diffusion
appears, we refer to a generalized diffusion equation which describes transport pro-
cesses with long memory [10]; the physical model of water transport in soil, which is
a generalized Richards’ equation with time-fractional derivative [21]; the similarity
problem of nonlinear integro-differential type [22], etc.

There have been a number of numerical methods constructed for the time-
fractional diffusion equations. We mention, among others, the work [17] by Liu
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et al. on the finite difference method in both space and time, a finite difference
scheme for the fractional diffusion-wave equation by Sun and Wu [29], a L1 scheme
used to approximate the fractional order time derivative by Langlands and Henry
[14], a particle tracking approach by Zhang et al. [30], an alternating direction im-
plicit scheme by Zhang and Sun [31], finite difference schemes for a variable-order
equation by Sun et al. [28], and convergence analysis of the finite element method
in Jin et al. [11].

On one side, fractional derivatives are non-local operators, which explains one of
their most significant uses in applications: they possess a memory effect which is
present in several materials such as viscoelastic materials or polymers. On the other
side, the nonlocality of the fractional derivatives makes the design of accurate and
fast methods difficult. In particular, the fact that all previous solutions have to be
saved to compute the solution at the current time point would make the storage very
expensive if a low-order method is employed. This consideration has inspired some
recent work [15, 16] on developing spectral methods for time-fractional differential
equations. Particularly, Lin and Xu [16] proposed a finite difference scheme in time
and Legendre spectral method in space for the time-fractional diffusion equation.
A convergence rate of (2 − α)-order in time and spectral accuracy in space of the
method was proved, where α is the time derivative order.

In this paper, we follow the work in [16] with an attempt to improve the er-
ror estimates obtained therein. The main contribution of the paper is as follows:
Firstly, a sharper estimate for both time and space errors is derived by using differ-
ent analysis techniques. Specifically, we obtain a more accurate coefficient in front
of the time error term and remove the undesirable factor in the space error term,
which grows with decreasing time step. Secondly, this new estimate is confirmed
by a number of numerical tests carefully designed for the verification.

The outline of this paper is as follows. In the next section we first describe
the time discretization for the time-fractional diffusion equation, then derive the
truncation error. In Section 3 we describe two spectral methods for the space
discretization, and derive the full discrete error estimates. Some numerical examples
are given in Section 4. Finally we give some concluding remarks in Section 5.

2. A 2− α order finite difference scheme in time

We first describe the problem of fractional differential equations that is studied
in this paper. Let T > 0, Λ = (−1, 1), I = (0, T ], consider the time-fractional
diffusion equation of the form

(1) ∂αt u(x, t)− ∂2xu(x, t) = 0, x ∈ Λ, t ∈ I,

subject to the following initial and boundary conditions:

(2) u(x, 0) = g(x), x ∈ Λ,

(3) u(−1, t) = u(1, t) = 0, 0 ≤ t ≤ T,

where α is the order of the time-fractional derivative. Here, we consider the case
0 < α < 1 and fractional derivative in the Caputo sense [23], defined by

∂αt u(x, t) =
1

Γ(1− α)

∫ t

0

∂su(x, s)
ds

(t− s)α
, 0 < α < 1.


