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SCHEMES AND ESTIMATES FOR THE LONG-TIME

NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS FOR

LORENTZ METAMATERIALS

JICHUN LI AND SIMON SHAW

Abstract. We consider time domain formulations of Maxwell’s equations for the Lorentz model
for metamaterials. The field equations are considered in two different forms which have either six
or four unknown vector fields. In each case we use arguments tuned to the physical laws to derive
data-stability estimates which do not require Gronwall’s inequality. The resulting estimates are,
in this sense, sharp. We also give fully discrete formulations for each case and extend the sharp
data-stability to these. Since the physical problem is linear it follows (and we show this with
examples) that this stability property is also reflected in the constants appearing in the a priori

error bounds. By removing the exponential growth in time from these estimates we conclude
that these schemes can be used with confidence for the long-time numerical simulation of Lorentz
metamaterials.
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1. Introduction

Electromagnetic metamaterials are artificially structured materials which exhibit
exotic properties such as negative refractive index and reversed Doppler effects. The
successful construction of such metamaterials in 2000 triggered a wave of further
study of metamaterials and exploration of their applications in diverse areas such
as sub-wavelength imaging and cloaking. More details can be found in monographs
such as [9, 28, 34, 7] and references cited therein.

Although the finite element approximation of Maxwell’s equations has been ex-
tensively documented for ‘classical’ materials (see, for example, [3, 4, 8, 14, 31,
33, 37] and their references), there is now an opportunity to build on this body of
knowledge for the development and analysis of finite element methods (FEM) for
Maxwell’s equations for metamaterials. In this direction we mention [10, 11, 5, 2, 21]
for the time-harmonic form, and [19, 20, 16] for the time-domain form. Our focus
here is on the Lorentz model which, as we will see below, introduces additional un-
knowns for electrical and magnetic polarizations. These are governed by ordinary
differential equations (in time) which hold at each point in space and have the effect
of making the (meta)material dispersive, or ‘frequency dependent’. In this context
we recall also the work on the time-domain Maxwell’s equations in general disper-
sive media in [1, 17, 24, 35, 27, 36]. In particular, [1] contains a study of numerical
dispersion for Debye and Lorentz media and [35] gives long-time stability and error
estimates for a Debye model.
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In recent years there have been several efforts in developing and analyzing some
FEMs for the time-domain Maxwell’s equations for Lorentz metamaterials (see, for
example, [22] and the references therein). However most of these previous results
for data-stability and error bounds were derived with the use of Gronwall-type
inequalities and, hence, are of limited practical use due to the exponential growth,
in time, of the constants. This article improves upon this current ‘state of the art’
by building upon the ‘long-time’ results in [35] for two popular numerical schemes.

To be precise, in Section 2 we describe the time domain formulation of Maxwell’s
equations for Lorentz metamaterials. In Sections 3 and 4, respectively, the field
equations are considered in two different forms which have, respectively, six and four
unknown vector fields. In each case we use arguments tuned to the physical laws
to derive data-stability estimates which do not require Gronwall’s inequality. The
resulting estimates are sharp, in that they contain stability constants that are time
independent, and appear to be novel. We also give fully discrete formulations for
each case and extend the sharp data stability to these formulations. Moreover, since
the physical problem is linear the error terms obey essentially the same stability
estimates but with data replaced by approximation error. With this in mind we
can therefore show by examples that the long-time stability properties of these
schemes are also reflected in the a priori error bounds. The time dependence in
these constants then arises from the time dependence in the norms of the data
and exact solution and produces, at worst, low-order-polynomial growth in time
rather than the exponential growth that arises from Gronwall arguments. Hence,
we can conclude that the resulting numerical schemes can be used with confidence
for the long time numerical simulation of Lorentz metamaterials. This is the major
contribution of the work presented below. In Section 5 we close with a short
discussion of the formulations.

Throughout our notation is mostly standard. For example, C > 0 will denote a
generic positive constant (independent of the finite element mesh size h and time
step size τ) and we let (Hσ(Ω))3 be the standard Sobolev space equipped with the
norm ‖ · ‖σ and semi-norm | · |σ. Specifically, ‖ · ‖0 will mean the (L2(Ω))3-norm.
From [31] (for example) we also recall the standard spaces for Maxwell problems,

H(curl; Ω) = {v ∈ (L2(Ω))3 : ∇× v ∈ (L2(Ω))3},
H0(curl; Ω) = {v ∈ H(curl; Ω) : n× v = 0 on ∂Ω},
Hσ(curl; Ω) = {v ∈ (Hσ(Ω))3 : ∇× v ∈ (Hσ(Ω))3},

where σ > 0 is a real number, and Ω is a bounded Lipschitz polyhedral domain in
R3 with connected boundary ∂Ω and outward directed unit normal n. We equip
H(curl; Ω) with norm ‖v‖0,curl = (‖v‖20+‖curl v‖20)1/2, and Hσ(curl; Ω) with norm

‖v‖σ,curl = (‖v‖2σ+‖curl v‖2σ)1/2. For clarity, in the rest of the paper we introduce

the vector notation L2(Ω) = (L2(Ω))3 and Hσ(Ω) = (Hσ(Ω))3 and also we often
omit the explicit display of the dependence of quantitites on x ∈ Ω because we
want to focus on the handling of their time dependence. The spatial dependencies
are handled in a standard way. Further notation is introduced as and when needed.

2. The governing equations

In general terms, the problem of electromagnetic wave propagation requires the
solution of Maxwell’s equations,

(1) ∇×E = −∂B

∂t
, and ∇×H =

∂D

∂t
in Ω× I


