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Abstract. Two second-order convolution quadrature methods for fractional nonlinear

diffusion-wave equations with Caputo derivative in time and Riesz derivative in space

are constructed. To improve the numerical stability, the fractional diffusion-wave equa-

tions are firstly transformed into equivalent partial integro-differential equations. Then,

a second-order convolution quadrature is applied to approximate the Riemann-Liouville

integral. This deduced convolution quadrature method can handle solutions with low

regularity in time. In addition, another second-order convolution quadrature method

based on a new second-order approximation for discretising the Riemann-Liouville in-

tegral at time tk−1/2 is constructed. This method reduces computational complexity if

Crank-Nicolson technique is used. The stability and convergence of the methods are

rigorously proved. Numerical experiments support the theoretical results.
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1. Introduction

Fractional partial differential equations naturally arise in anomalous diffusion with ran-

dom walk processes due to non-local properties of fractional integrals and fractional deriva-

tives. The fractional anomalous diffusion models are obtained by replacing the integer-

order calculus operators in the classical diffusion equations by fractional operators for

∗Corresponding author. Email addresses: jiaoyd�lse..a.n (Y. Jiao), jfhuang�lse..a.n

(J. Huang), sadia_735�yahoo.om (S. Arshad), tyf�lse..a.n (Y. Tang)

http://www.global-sci.org/eajam 538 c©2019 Global-Science Press



Convolution Quadrature Methods for Time-Space Nonlinear FDWEs 539

the memory effects [26, 34, 37, 42]. In particular, time and space fractional diffusion-

wave equations can interpolate the diffusion and the wave phenomena and describe pro-

cesses with spatial non-local dependence. Therefore, such models are widely used for

description of viscoelastic damping materials, diffusion images of human brain tissues,

etc. [11,16,22,29,35].

Since it is very difficult or often impossible to obtain analytical solutions of fractional

diffusion-wave equations [1,3,25,27,28], numerical methods are required. There is a vast

literature on approximation methods for time or time-space fractional linear diffusion-wave

equations [2, 5, 6, 12, 13, 19–21, 30, 33, 36, 38, 41, 43–45]. Using a classical (3 − α)-order

approximation for the Caputo derivative, Sun and Wu [38] constructed a finite difference

scheme and studied its stability and convergence. Li et al. [19] applied a finite differ-

ence method in time and finite element method in space to time-space fractional diffusion-

wave equations and investigated semidiscrete and fully discrete numerical approximations.

Liu et al. [21] considered numerical methods for multi-term time-fractional wave-diffusion

equations. Using equivalent partial integro-differential equations, Huang et al. [13] con-

structed two finite difference schemes for a class of time fractional diffusion-wave equations

and proved their first- and second-order convergence in temporal and spatial directions, re-

spectively. Mustapha and Schötzau [30] established the well-posedness of an hp-version of

time-stepping discontinuous Galerkin method for fractional diffusion-wave evolution prob-

lems, derived error estimates in a nonstandard norm and showed exponential convergence

in the number of temporal degrees of freedom for solutions with singular behavior near

t = 0.

On the other hand, Wang and Vong [41] used a weighted and shifted Grünwald dif-

ference operator and compact difference technique to construct a higher order scheme for

a time fractional diffusion-wave equation. Bhrawya et al. [2] presented a spectral numeri-

cal method for fractional diffusion-wave and fractional wave equations with damping. The

method is based on the Jacobi τ-spectral procedure and Jacobi operational matrix for frac-

tional Riemann-Liouville integrals. Zeng [44] proposed second-order in time and space

stable and conditionally stable finite difference schemes for time fractional super-diffusion

equation based on the fractional trapezoidal rule and the generalised Newton-Gregory for-

mula. Ye et al. [43] derived a compact difference scheme for a distributed-order time-

fractional diffusion-wave equation, and proved its unique solvability, stability and conver-

gence. Chen and Li [5] used equivalent integro-differential equations and product trape-

zoidal rule to construct a compact finite difference scheme for fractional diffusion-wave

equations. Chen et al. [6] considered a second-order backward differentiation formula al-

ternating direction implicit difference for two-dimensional time fractional diffusion-wave

equations.

The problems arising in numerical solution of non-linear fractional diffusion-wave equa-

tions are more complex. Nevertheless, Dehghan and Abbaszadeh [7] constructed a finite

difference-spectral element method and studied its stability and convergence. This method

performs better than other existing methods. Huang and Yang [14] combined the spectral

Galerkin method in space and the fractional trapezoid method in time having the spectral

accuracy in space.


