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Abstract. A family of explicit parametric stochastic Runge-Kutta methods for stochastic

Poisson systems is developed. The methods are based on perturbed collocation methods

with truncated random variables and are energy-preserving. Under certain conditions,

the truncation does not change the convergence order. More exactly, the methods re-

tain the mean-square convergence order of the original stochastic Runge-Kutta method.

Numerical examples show the efficiency of the methods constructed.
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1. Introduction

Stochastic differential equations (SDEs) have been used to model various physical, fi-

nancial and biological phenomena [17]. Except for special cases, explicit analytic solutions

of such equations are not known, so that various numerical methods for SDEs have been

developed in recent decades — cf. Refs. [2,3,9,12,13,16,19,28].

Since many systems have important physical or geometric properties, it is natural to

use approximation methods that preserve the peculiarities of the systems. In this paper

we are concerned with energy conservation – a significant property of mechanical systems.

Energy-preserving numerical methods have proven to be more stable than general ones,

especially in long-term simulations. Numerous energy-preserving numerical methods for

deterministic systems can be found in literature — cf. [1, 4, 5, 7, 10, 18, 23–26]. Never-

theless, energy-preserving methods for stochastic systems are less developed, although for

stochastic ordinary differential equations one can note difference methods [21], discrete
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gradient methods [11,15], projection methods [15,27], averaged vector field methods [6]

and a few others.

Here, we consider the stochastic Poisson systems in Stratonovich sense

d x = B(x)∇H(x)(d t +σ ◦ dWt), 0≤ t ≤ T,

x(0) = x0,
(1.1)

where x is an n-dimensional column vector, σ ∈ R a constant, and Wt a 1-dimensional stan-

dard Wiener process defined on a complete filtered probability space (Ω,F ,P , {Ft}t≥0)—

cf. [6]. Besides, H(x) is a real-valued energy function, B(x) ∈ Rn×n a skew-symmetric

matrix-valued function, x0 a F0-measurable random variable with E‖x0‖2 <∞ and ‖ · ‖
the Euclidean norm. If I is an identity matrix and

B(x) = J−1 =

�
0 −I

I 0

�
,

then (1.1) reduces to a stochastic Hamiltonian system.

The results of this work can be easily extended to the following stochastic Poisson sys-

tems with multiple Wiener processes

d x = B(x)∇H(x)

�
d t +

r∑

i=1

σi ◦ dW i
t

�
, 0≤ t ≤ T,

x(0) = x0,

(1.2)

since the notations

σ =

�
r∑

i=1

σ2
i

�1/2
, Wt =

1

σ

r∑

i=1

σiW
i
t

transform (1.2) into (1.1) [8].

It is easy to verify that the energy function H(x) is a conserved quantity for the sys-

tem (1.1). To find the solution of the system (1.1), Cohen and Dujardin [6] proposed

energy-preserving stochastic averaged vector field methods. However, these methods have

only mean-square convergence order 1 as many other numerical approaches to stochastic

problems. In contrast, the energy-preserving numerical methods developed in this work,

can achieve arbitrary high convergence order. It is also worth mentioning that most of

the existing stochastic energy-preserving numerical approaches, including discrete gradi-

ent and averaged vector field methods are fully implicit — i.e. at each step they require

to find solutions of high dimensional nonlinear systems that inevitably increases computa-

tional cost. On the other hand, the energy-preserving numerical methods considered here

are based on explicit parametric stochastic Runge-Kutta (SRK) methods. Therefore, in or-

der to determine the corresponding parameter, at each step only one nonlinear equation

has to be solved and the computational cost is much lower.

The rest of the paper is organised as follows. Section 2 reviews perturbed collocation

methods for ordinary differential equations (ODEs). In Section 3, we develop a family of


