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Abstract. We studied the in�uence of the arrays of ceramic balls on the hardness of
water and discovered effects, which can possibly explain the correlation between the
balls and the growth of calcite crystals of CaCO 3. A model to compute the electric �eld
at the surface of the balls is proposed. It is shown that the number of polarised nuclei
contributing to scale prevention is considerably larger than in natural water. Numerical
simulations for a two-dimensional macroscopic model show that the effect of ceramic
balls can be reproduced in con�gurations studied experimentally and industrially. Sum-
marising, we note that ceramic balls induce a polarisation in the calcite particles thus
decreasing the surface tension energy of crystals in the vicinity of the ceramic balls.

AMS subject classi�cations : 68U20, 78A57, 97M50, 97E99
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1. Introduction

Water pollution is a serious problem everywhere in the world. As a kind of water pol-
lution, scale formations — i.e. hard grayish-white substance, often reduce the ef�ciency of
cleaning systems and in�ict severe damage on pipes and aqueous closed systems. Exam-
ples of such damage are shown in the left and central picturesin Fig. 1. Various anti-scale
treatments have been developed — cf. Refs.[2, 3, 7–9, 11, 12, 14, 19, 20] , one of which,
a tight aggregate of ceramic spheres, is presented in the right picture in Fig. 1. Immersed
in natural water, it prevents the scale formation [13] . The diameter of the ceramic balls
is around 1 cm and their surface is covered by inorganic oxides, whose main ingredients
are SiO 2 and Fe . The latters produce free electrons by the reaction Fe ! Fe

++
+2e . The

electrons, in turn, are captured by the hydrogen ions in water 2H

+
+2e ! H 2 thus leaving

a considerably thin layer of OH

� very near the surface of the balls.
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Figure 1: Unwanted e�ect of scale and the device studied here to cure it.

Figure 2: Left: CaCO 3 crystals in natural water. Right: same after 24h in contact with the spheres

shown in Fig. 1.

Unlike chemical treatments, this approach does not change the water composition, only
the size of the calcite aggregates — cf. the right picture in Fig. 2. However, in spite of en-
couraging outcome of various experiments, theoretical background of the method is open.

1.1. The process and the approach

What is the cause of scale formation? Calcite particles formcrystals by a phase-change
phenomenon. Scale is a more stable state for the crystal particles of calcium carbonate
( CaCO 3, calcite being its most stable crystal form) obtained by adhering to the surface
of another material to release surface tension energy. Experimental measurements [22]
show that the ceramic spheres in water generate an electric �eld near the layer caused by
electrolytic solutions such as water containing Ca

++ and CO

� �
3 ions: the layer of OH

� attracts
Ca

++ ions thus changing the crystal structure of calcite. The crystal particles close to the
surface of a ceramic sphere are exposed to an electric �eld and store this additional pola-
risation energy which changes the crystal structure makingscale formation less favourable
energetically. Therefore, our investigation is focused onan electric �eld and also on pola-
risation energy with special emphasis on surface tension energy. This approach is referred
to as the contact model.

Finally, as soon as it becomes clear that the slate-capable calcite concentration dimin-
ishes in the vicinity of the ceramic balls, the ef�ciency of various arrangements of ceramic
spheres has to be studied. This is done by using a macroscopicmodel and an ad-hoc bound-
ary condition for the calcite concentration. This last section is mostly numerical.
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1.2. Plan

The goal of this work is to clarify the mechanism of such devices preventing the scale for-
mation in natural water. This phenomenon is described in Section 2 by a Poisson-Boltzmann
equation with appropriately chosen physical constants. Solving the equation numerically,
we obtain the electric �eld on the surface of ceramic balls and, consequently, the polarisa-
tion energy generated in particle.

In Section 3, we show that the polarisation energy gives riseto an extraordinary sup-
pression of nucleation rate, which leads to a substantial decrease of nuclei contributing to
the scale formation.

In Section 4, a framework of crystal lattice model describing a structure of particle is
introduced and used to compute the deviation of the surface tension energy based on the po-
larisation energy. This means the decrease of the surface tension energy which contributes
to reduction for formation of the scale.

Section 5 deals with the distribution of polarised nuclei carried by the water �ow
through an array of ceramic balls in a pipe. Numerical simulation of this process allow
to clarify the behavior of polarised nuclei and provide important information concern-
ing the installation of the ceramic balls in pipes. In appendix, we use a time-dependent
Ginzburg-Landau model to discuss the growth of particles with the polarisation. Under
the assumption that the radius of particle is sphere, it is shown that the time-asymptotic
radius of particle is comparable to the radii of the crystals observed by using the standard
(NH 4)2 CO 3 Gas Diffusion Method[7] . This proves the validity of the contact model in the
method.

Let us note that H. Kawarada provided the modelling of the problem and O. Pironneau
carried out numerical experiments, the rest was done together.

2. Electro-Chemical Phenomena Near Surfaces of Ceramic Sphe res in Water

It is known that the surface of ceramic spheres placed in water is highly charged. Since
ceramic surface is covered with inorganic oxide, it supplies hydroxyl groups near the sur-
face, which are charged positively or negatively according to the [pH] . The surface of
a ceramic sphere is normally charged negatively. ThereforeCa

++ ions are attracted to the
surface and form a cloud. Similarly CO

� �
3 ions are pushed away from the surface. Negative

charges on the surface of the ceramic sphere and positive clouds of Ca

++ ions combine
to form a diffused electric double layer, which brings about an electric potential near the
surface of the ceramic spheres in water[6,15] .

2.1. Modeling

Let x 7! � (x) be the electric potential de�ned at each point x outside a disk in R2 or
sphere in R3.

In natural water the concentration of Ca

++ and CO

� �
3 is uniform and equal to the same

constant C0. Throughout the paper, we assume that C0 = 0.017 mol m

� 3. However, if
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ceramic balls are present, the concentrationsC1 of Ca

++ and C2 of CO

� �
3 are neither equal

nor constant because of the electric �eld in�uence. Neverth eless, they are connected as
C1C2 = C2

0 due to conservation of �ux — cf. [16] . It follows that the charge density x 7!
�̄ (x) made by C1 and C2 is

�̄ = z̄F(C1 � C2),

where z̄ is the number of electric charges of an ion,z̄ = 2 for Ca

++ and F= 96485 (C/mol)

is the Faraday constant[6, 15] . Conservation of �ux yields that C1 = C0eb� , C2 = C0e� b�

with b = z̄F=(RT), where R = 8.3145 (J/mol/K) denotes the perfect gas constant andT
is the absolute temperature[16] . We note that if T = 293, then b = 79.211. Thus

�̄ = 2z̄FC0 sinh(b� ). (2.1)

In addition, � satis�es a Poisson-Boltzmann equation — viz.

� � =
�̄

� 
 � 0
, (2.2)

where � is the Laplace operator," 
 the relative permittivity of water and " 0 the permittivity
of vacuum:

� 
 = 78.5, � 0 = 8.8542 � 10� 12
(C/V m) . (2.3)

2.2. Boundary conditions

Far away from the ball or disk the function � takes value 0. However, on the boundary
of the ball or disk this value, denoted by � 1, depends on the inorganic oxides forming the
surface of the ceramic sphere or disk, so that

� 1 = � 0.0591 [pH] � 0.0295 log[ P( H 2)] .

This equation is derived from the Nernst equation [22, Eq. (20-2)] . Let P( H 2) refer to the
partial pressure of H 2. Here we assume thatP( H 2) = 1 (atmosphere) and note that the
model under consideration works with the parameter C0 in the range O(0.01) mol/ m� 3.

2.3. Numerical analysis of the Poisson-Boltzmann Problem

We assume spherical or cylindrical symmetry of the domain, which is determined by
radius r := jxj 2 (Rb, + 1 ) and typically Rb = 0.01. With spherical (d = 2) or cylindrical
(d = 1) symmetry of (2.1), the Eq. (2.2) takes the form

�
1
r d

@r ( r d@r � ) + ÃC0 sinh(b� ) = 0, � (Rb) = � 1, � (R1 ) = 0,

where Ã= 2z̄F=(� 
 � 0). We note that d = 0 corresponds to a planar boundary.
The previous considerations show thatÃ = 5.5527 � 1014, b = 79.211 and introducing

a new function  = b� , we rewrite the above problem as

� @r ( r d@r  ) + r dÃC0 bsinh( ) = 0,  (Rb) = b� 1,  (R1 ) = 0. (2.4)
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Neglecting the curvature effect, we take d = 0 and consider the equation

�  00+ � sinh = 0,  (Rb) = b� 1,  (R1 ) = 0, (2.5)

where � = ÃC0 b . Multiplying it by  0 and integrating the resulting equation yields

1
2

 02 = � cosh + C.

Note that the constant C is equal to � � , since

lim
r !1

 ( r ) = lim
r !1

 ( r ) = 0.

It follows that  0= �
p

2� (cosh � 1) and, consequently,

 0(Rb) = �
Æ

2� (cosh(b� 1) � 1). (2.6)

The electric �eld at the surface of the ball can be now computed as

E = �
@ �

@r
(Rb) = �

1
b

 0(Rb)

=

v
t 2ÃC0

b

Æ
cosh(� 4.6813 [pH] )

= 0.3744 � 107
Æ

C0 cosh(4.6813 [pH] ). (2.7)

It depends on [pH] and C0 and for b = 79.211 the values of E are presented in Tables 1
and 2.

Table 1: Variation of E, C0 = 0.017 .

[pH] 2 5 7 9 11

E 8.179 � 108 9.169 � 1011 9.894 � 1013 1.068 � 1016 1.151 � 1018

Table 2: Variation of E, [pH] =7.

C0 0.001 0.01 0.05 0.1

E 1.984 � 108 2.400 � 1013 1.697 � 1014 2.400 � 1014

Remark 2.1. The Eq. (2.5) shows that

� 00(Rb) =
�

b
sinh(b� 1) = � 5.5527 � 1014C0 sinh(4.6813 [pH] ) = � 0.8033 � 1027.

The calcite crystal is approximately 5 angstrom wide. In this range, the change of the
electric �eld is proportional to � 00and can be essentially different at various points. What is
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then a reasonable value forE? The numerical solution of (2.4) is reported in the appendix .
To obtain accurate results, an extremely �ne grid has to be used. Our numerical experiments
provide a lower value for E, which yields

107 < E < 1013.

Experimental measurements in[22] con�rm this analysis.

In what follows we set E � 1010.

3. Extraordinary Suppression of Nucleation Rate in Contact Mo del

Let us assume that calcite particles are spherical with radius r . By � G we denote the
difference between the Gibbs free energy of the electrolytic solution composed of Ca++ ,
CO� �

3 in water and the one for coagulated calcium carbonate in water. The term � depends
on the ions concentration and � G is negative for the solidi�cation usually found in city
water — cf. Subsection 3.3.

3.1. Activation energy of calcium carbonate particles

Let 
 refer to the surface tension energy between calcite and water. Then for coagulated
calcium carbonate, the total free energy change� g can be written in the form

� g = 4�
 r 2 +
4�
3

r 3� G.

The term � g grows along with the particle and attains its maximum

� g� =
16�

3


 3

(� G)2
(3.1)

at
r � = � 2




� G
. (3.2)

The value � g� represents the energy required for the particle to become a nucleus[4] . It is
the activation energy.

3.2. Nucleation caused by electric �eld of ceramic sphere

Nucleus is an original form growing up into a crystal particl e. Nucleation means that
some suf�ciently small coagulated particles with the activ ation energy � g� become isolated
nuclei. The number of nuclei generated by nucleation per unit time is de�ned by

I = I0 exp
•

�
� g�

kT

‹
,
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where I0 is the total number of the coagulated particles. The nucleation rate is de�ned by
I=I0 [21, 25] . Here, we want to determine the effect of a polarisation energy D added to
� g� , on I .

The electric �eld E at the surface of the ceramic balls brings about a polarisation energy
density [23] in calcite particles near the ceramic balls

D =
" c


 " 0

2
E2 (J/ m3) (3.3)

with � c

 = 9.1 for calcite. The combination of D and the activation energy � g� leads to

a new activation energy — viz.

� g̃� = � g� +
4�
3

r � 3D,

and new nucleation rate Ĩ = I0 exp(� (� g̃� )=kT).
In order to clarify the in�uence of the perturbed energy on th e nucleation rate, we

consider the ratio

Ĩ
I

= exp
•

�
� g̃� � � g�

kT

‹
= e� q with q =

4�
3

r � 3 D
kT

. (3.4)

3.3. Suppression of nucleation rate

Let us recall experimental values of the main parameters used [5,17,22,28] .

� Surface tension (free) energy: 
 = 57 � 10� 3 (J/ m2).

� � G0 = � 47.4251(kJ=mol) = � 1.284 � 109(J/ m3) .

� � G = � � G0 � RTlog C2
0 .

Since� � G0 � � G, the Eq. (3.2) implies r � > 0.8903 � 10� 10. Moreover, taking into account
(3.3) and (3.4) and the inequality E > 1010, we write

q > 3.072 � 10� 20E2 > 3.072

and, consequently,
Ĩ
I

= exp(� q) < 0.046.

This substantially diminish the number of nuclei generating scale formations. Thus an
extraordinary suppression of nucleation rate occurs due tothe contact model.

4. Crystal Lattice Model

Another contribution to the polarisation energy for scale prevention is the decrease
of surface tension energy of the particle in water due to the structural change of calcite
caused by the perturbed energy. To study this phenomenon, weadopt Ono crystal lattice
model [24] and apply it to the crystal structure of calcite. This model demonstrates a good
agreement with experiments.
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4.1. Helmholtz free energy for crystals

The 3-dimensional crystal lattice model assumes that the crystal is composed of mole-
cules arrayed at lattice points and only the neighbouring molecules interact with each other
— cf. Fig. 3.

Figure 3: Multi-layers crystal structure. Left: Perio dic at zero Kelvin. Right: Random at ambient

temp erature.

Let S denotes the entropy. A small state entropy appears under special restrictions,
removing of which leads to a variety of large entropy states. The crystal tends to stay at
a minimum energy state at temperature 0K. All molecules try to �ll in the empty positions
— i.e. the white holes in the left picture in Fig. 3, so that the crystal becomes a complete
crystal. Let X0 be the number of such molecules. In this case, the number of con�guration
is W = 1. When temperature increases, some molecules leave black holes and try to occupy
white ones. Let X1 be the number of such molecules. According to[26] , the total number
of different con�gurations is

W(X0, X1) =
X0!

X1! � (X0 � X1)!
,

and the Boltzmann principle claims that

S = k log W(X0, X1).

Assuming the uniform structure of layers and applying the Sterling formula, we obtain

S � � X0k f Z log Z + ( 1 � Z) log (1 � Z)g,

where Z = X1=X0 and k is Boltzmann constant.
On the other hand, if the number of adjacent molecules depending on the lattice struc-

ture is �̄ , then the internal free energy U of the system is

U = �
e
2

�̄ X0Z2,

where � e is the potential energy between the adjacent molecules. Archer et al. [1] show
that e= 4 � 109=� (J) , where � = 1.625 � 1028 m� 3 is the density of the calcium carbonate.
Therefore, in this case, the Helmholtz free energyF is

F = U � TS.
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It should be noted that crystals are composed by many layers,but so far we considered
the free surface of the plane layer parallel to the other lattice layers. To analyse a stack of
lattice layers we label them from 1 to m. Let A be the area of each layer,n the number of
lattice points per unit area on each layer, andni the number of molecules included in a unit
area of i -th layer. The total number of molecules is denoted N. Then x i = ni =n represents
the concentration of molecules on the unit surface in i -th layer.

4.2. Multi-layered crystal

In order to determine the internal free energy of a crystal made of a stack of 2-dimen-
sional layers, we observe that each molecule has either 6 neighbor molecules from the same
layer or 3 ones from each adjacent layer.

The particle pairing number between i -th layer and its adjacent neighbour i + 1 is
3nAxi+ 1x i , whereas the one with i -th layer 6nAx2

i . Removing the pairs counted twice,
we obtain

U = � 3e nA

–

x1

•
x1 +

1

2
x2

‹
+

mX

i= 2

x i

•
x i +

1

2

�
x i � 1 + x i+ 1

� ‹ ™

, (4.1)

S = � nAk
mX

i= 1

�
x i ln x i + ( 1 � x i ) ln(1 � x i )

�
.

According to the contact model [24] , the total energy ¯̄F is the sum of Helmholtz free
energy F̄ = U � TS and the polarisation energy h x1, where h = D=� and D is de�ned in
(3.3). Thus

¯̄F = n Ahx1 � 3e nA

–

x1

•
x1 +

1
2

x2

‹
+

mX

i= 2

x i

•
x i +

1
2

�
x i � 1 + x i+ 1

� ‹ ™

+ T nAk
mX

i= 1

�
x i ln x i + ( 1 � x i ) ln(1 � x i )

�
.

4.3. Minimisation problem

Let
� = � 12ze+ kT ln

z
1 � z

(4.2)

be the chemical potential per particle. The stable state of the system is obtained by min-
imising the total energy ¯̄F under the constraint that the full chemical potential energ y
n A�

P m
i= 1 x i is constant.

For a = kT=e = 0.01575 and � = h=e, the optimality conditions have the form

� � 3 (2x1 + x2) + a ln
x1

1 � x1
= � 12z + a ln

z
1 � z

, (4.3)

� 3 ( x1 + 2x2 + x3) + a ln
x2

1 � x2
= � 12z + a ln

z
1 � z

, (4.4)
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� 3 ( x i � 1 + 2x i + x i+ 1) + a ln
x i

1 � x i
= � 12z + a ln

z
1 � z

, (4.5)

� 3 ( xm� 1 + 3xm) + a ln
xm

1 � xm
= � 12z + a ln

z
1 � z

. (4.6)

If � = � 3z, then x i = z, i = 1, � � � , m is the solution of the above problem.
Assuming that the number of layers is large and� + 3z small, we set x i = z + x0

i and
� 0= � + 3z, so that

� � 0+ 3
�
2x0

1 + x0
2

�
= a ln

1 + x0
1=z

1 � x0
1=(1 � z)

� a

�
x0

1

z
+

x0
1

1 � z

�

,

3
�
x0

i � 1 + 2x0
i + x0

i+ 1

�
= a ln

1 + x0
i =z

1 � x0
i =(1 � z)

� a

�
x0

i

z
+

x0
i

1 � z

�

,

3
�
x0

m� 1 + 3x0
m

�
= a ln

1 + x0
m=z

1 � x0
m=(1 � z)

� a

�
x0

m

z
+

x0
m

1 � z

�

.

Note that for the uniform grid of size d y the �nite difference approximation of � u �
d2u=d y2 = 0 is � ui � (ui � 1 � 2ui + ui+ 1)=� y2. This indicates that the above formulas
represent �nite difference discretisation of the problem

� 3� y2 d2u
d y2

( y) +
•
a

•
1
z

+
1

1 � z

‹
� 12� y2

˜
u( y) = 0, y 2 (0,1),

u(0) = �
� 0

3
,

du
d y

(1) = 0.

The solution of this problem has the form

u = ce� y + be� � y

with constants

� =

v
u
t a

3� y2

•
1
z

+
1

1 � z

‹
� 4, c =

� 0e� 2�

3(1 + e� 2� )
, b =

� 0

3(1 + e� 2� )
.

Thus

x0
i � u(ih) �

� 0

3
exp

�

� i

v
t a

3z(1 � z)

�

and

x i � z +
•

�

3
+ z

‹
exp

�

� i

v
t a

3z(1 � z)

�

.

This solution can be used to determine the deviation of the surface tension energy
arising because of polarisation energy. The Helmholtz freeenergy for each layer of the
uniform phase (bulk) is de�ned by

F̃ = nA�
�
� 6z2 � e+ kT � f z � ln z + ( 1 � z) ln (1 � z)g

�
, (4.7)
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where z is the density of molecule per unit surface — i.e. the value at the bulk of the
removing-effect surface. The term� 6z2 above is obtained by settingxm = xm� 1 = z in the
sum from the right-hand side of the Eq. (4.1). Differentiati ng F in z, we may regard � as
the chemical potential [24] and

� =
1
nA

�
dF̃
dz

= � 12z � e+ kT � ln
z

1 � z
.

4.4. Finding surface density and parameter �

For calcium, the experimental value of molecular entropy at room temperature is
4.54(J/ K/ mol). Accordingly, it is 4.54 =NA per particle, where NA refers to the Avogadro
number [27] . Using this number in its theoretical representation

4.54
NA

= � k
•

X1

X0
ln

X1

X0
+

•
1 �

X1

X0

‹
ln

•
1 �

X1

X0

‹‹
,

we �nd out that X1 = 0.2348X0. Hence, the number of particles per unit surface(X1=X0)2=3

is
z = ( 0.2348)2=3 = 0.3806. (4.8)

In addition, recalling � = h=e= aD=(kT� ), we obtain

� = 0.1007 � 10� 20E2. (4.9)

4.5. Deviation of particle surface tension energy in contac t model

According to [24] , the surface tension energy is de�ned by


 ( x1, x2, � � � , xm, z) =
¯̄F � mF̃

A
� n�

mX

i= 1

( x i � z).

The sensitivity of 
 with respect to x i and z is determined as

�
 =
mX

i= 1

@ 


@x i
� x i +

@ 


@z
� z,

and according to the de�nition of ¯̄F, @ 
=@x i = 0 for i = 1,2, � � � , m at equilibrium point.
Hence

�
 = � mn
�

� 12z � e+ kT � ln
z

1 � z

�
� z � n

@ �

@z

mX

i= 1

( x i � z)� z � n�
mX

1

(� 1)� z.

Recalling the Eq. (4.2), we compute @ �=@z, so that

�
 = � n
•

� 12e+
kT

z(1 � z)

‹ mX

1

( x i � z)� z = � n
@ �

@z
� z

mX

1

( x i � z). (4.10)
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4.5.1. Representation of �
=


Let us note that the additional energy h = ( @ �=@z)� z corresponds to the increase of the
chemical potential � on the surface layer andh is related to the polarisation energy de�ned
in (3.3) by D = � h.

As reported in [10] , the crystal corresponding to this increased chemical potential seems
to be aragonite crystal. The difference between� G(calcite) = - 269.8( kcal/ mol) and
� G(aragonite)= - 269.55 (kcal/ mol) — cf. [17] ), is in fact close to the polarisation energy
D — � 269.8 � (� 269.55) = � 0.25(kcal/ mol) = � 1.046(kJ/ mol) = � 2.835 � 107 (J/ m3).
This approximately corresponds toD if E = 109.

Using only the �rst layer in (4.10) we have �
 = � nh(x1 � z), where n = � 2=3 is the
surface density of particle. Therefore,

�




= � � 2=3 D

�

( x1 � z),

with 
 provided in Subsection 3.3.

4.5.2. Computation of �
=


Following the considerations of Section 2 and the Eq. (4.9), we set E = � 1010 and � =
0.1007� 2, thus obtaining

x1 � z =
•

�

3
+ z

‹
exp

�

�

v
t a

3z(1 � z)

�

= 0.2892� 2 + 0.3278.

It follows that �
=
 = � 0.807� 2(� 2 + 1.134).
Higashitani and Oshitani [11] noted that the perturbation energy on the particle of

calcium carbonate is ef�cient in the prevention of scale formation only if [pH] , C0 and
P(H2) are located in a speci�c intervals. We observed that if � 2 = 2.553, then �
=
 � � 1.
It follows that 
 � 
 + �
 and 
 (1 + �
=
 ) � 0. The latter means either the absence of the
surface tension energy or its substantial reduction at least.

5. Numerical Simulations of Calcite in Flows through Cerami c Spheres
Structures

The above considerations show that the polarisation in�ict s the change of the calcite
particles in the vicinity of ceramic spheres. Since these changes happen at very fast speed,
the vorticity near the surfaces of ceramic spheres increases the number of particles affected
by polarisation. If the �ow has a moderate Reynolds number, i t can be well modelled by
the Navier-Stokes equation (5.1) with the zero velocity on the balls. The concentration of
calcite is modelled by a convection diffusion equation, but the boundary conditions have
to re�ect the fact that the presence of ceramic balls diminishes the concentration and also
that the vorticity is high — i.e. that the upstream face of the balls is more active than its
downstream side.
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The purpose of this section is to measure the macroscopic effect for an array of ceramic
balls in the �ow of calcite in water. We conducted two types of simulations, the �rst of which
concerns in�ow on the right and out�ow on the left in a box-lik e container. The parameters
are the geometrical arrangements of the ceramic balls and the pressure difference between
the inlet and the outlet and the size of the container. In the second one, we attempt to
numerically replicate our experiments. It is a cylindric container with a rotating magnet
below it, which induces the rotation of the balls around the a xis of the cylinder. In addition
to rotating velocity, we also use various geometrical parameters.

In all simulations, the polarisation ef�ciency of the ceram ic balls is an important param-
eter. It is not known and must be guessed. Hence this section remains phenomenological,
indicating a trend rather than experimentally comparable n umbers.

5.1. The partial differential equations

Flows are described by the Navier-Stokes equations

@t u + ur u + r p � � � u = 0,

r � u = 0,
(5.1)

where p is the pressure andu the velocity. The reduced viscosity is �xed at � = 1=500 and
velocity u = 0 is given at t = 0. It is also equal to zero on the spheres (disks) and is given
on the walls of the container except at the inlet and outlet wh ere we prefer to impose the
pressure gradient and the zero tangential velocity.

The water is charged with calcite with initial concentratio n C0 at the inlet pipes. Ev-
erywhere else the concentration of calcite without the decrease of surface tension energy
satis�es the inequality C(x, t ) � C0. Without loss of generality, we assume that C0 = 1.
The reaction reducing the surface tension energy of calciteoccurs mainly within a very thin
boundary layer around each sphere and is modelled by the equation

�
@C

@n
= � j� nj C, (5.2)

where n is the normal to the spheres and� n the normal stress in the �uid — i.e.

� n = pn + �
@u
@n

, j� nj2 = p2 + � 2
•

@us

@n

‹ 2

.

Naturally, a strong pressure shall bring calcite closer to the balls and the strong tangential
part of the normal stress slows down calcite particles forcing them to stay longer near the
balls. The coef�cient � is a decreasing function of� , which governs the absorption rate due
to magnetic spheres. It also depends on the reaction rate�
=
 of the calcite transformation
and, to some extend, on the time calcite spends near a ball — i.e. on the �uid velocity u.
Concentration C satis�es the equation

@t C + ur C � � � C = 0, (5.3)



Scale Prevention by Ceramic Balls 437

and the conditions that C = 0 at the walls, C = C0 at the in-pipe, @C=@n = 0 at the exit
pipe and the Eq. (5.2) on the spheres. The Eq. (5.3) can be reformulated in variational
form as follows: Find C such that for all Ĉ the equation

Z




Ĉ(@t C + ur C) + � r Ĉ � r C +

Z

spheres

� j� njĈC= 0 (5.4)

holds.

Remark 5.1. At present there is no reliable formula describing � in terms of � . The molec-
ular diffusion � has to be measured as well but it is small in all computations below we set
� = � .

5.2. Cavity �ows through ceramic balls structures

In the parallelepiped shaped container of sizeXl � Yl � Zl = 1� 0.7� 1 (in meters) water
�ows from the in-pipe on the right to the exit pipe on the left. We assume thatYb = Tl =2,
the radius of the spheres isr = 0.012, the diameter of the pipes w = 0.1 and the centers
of in�ow and out�ow pipes are, respectively, located at the p oints (Xl , Yb + w=2, Zl =2)
and (0, Yb + w=2, Zl =2) — cf. Fig. 4. The number of spheres in the directions x, y, z are
respectivelyma, na, oa. They are uniformly distributed in the parallelepiped of si ze xc, yc, zc

and centered at the points Xa, Ya, Za, so that there are also spheres at the corners of the
parallelepiped. The problem is considered in 2D and in the end of this section we attempt
to measure the errors connected with such an approximation.

A pressure gradient is imposed between the inlet and the outlet pin � pout = 10. Al-
though the gradient value is arbitrary, it �xes Reynolds num ber in the range of a few hun-
dreds, which is compatible with the mesh resolution of about 15000 vertices used here.
Because of pressure gradient, the horizontal velocity depends on the layout of the spheres
and is around 7. Thus the Reynolds number connected to the disk diameter is 70 and 3500,
depending on the domain size.

Fig. 5 shows the concentration levels at T= 2.5 after 50 time steps for � = 0.02 and
0.2. The change of the calcite concentration is shown by different colors varying from red
to blue. It is more substantial for � = 0.2. Fig. 6 shows the concentration levels at T= 2.5
after 50 time steps for � = 0.2 for a different geometrical con�guration. It is clear th at
the constructions allowing to �ow the �uid through the conta iner without contacts with
the balls is a wrong design. The effect of a stronger pressuregradient is obvious and not
shown here. Above a certain threshold there is only a partialtransformation of the calcite,
unless the number of rows of balls is increased. Below the threshold the calcite lingers
unnecessarily long near the balls.

5.3. Rotating �ows in cylinders with ceramic balls

In our experiments, a rotating magnetic agitator located below the container induces
a rotational �ow with an added magnetic agent in a circular cy linder. Several layers of
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Figure 4: Sketch of computational domain. Rectangle (0, Xl ) � (0, Yl ) minus black disks uniformly

distributed in the rectangle (Xa � xc=2, Xa + xc=2) � (Ya � yc=2, Ya + yc=2) . Calcite charged water enters

via hole on the right vertical b order and departures via hole on the left b order.

Figure 5: Concentration C at T=2.5 after 50 time steps. Hard water (red) transforms into soft water

(blue). Water, saturated with calcite, runs from right to left through an array of magnetic disks. It is

losing calcite and departure through a section ab ove the middle of left vertical b oundary. Left: � = 0.02 .

Right: � = 0.2 .

Figure 6: Concentration C at T=2.5 after 50 time steps for � = 0.2 for di�erent geometrical con�gura-

tions. It shows that the array of spheres has to fully blo ck the pip e.
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not rotated with the �ow magnetically coated balls are insta lled near the cylinder bottom.
To simplify simulations we assume that the cylinder bottom rotates but balls and vertical
boundary of the cylinder do not move.

Ignoring the balls and using cylindrical coordinates, we can write the solution of the
Navier-Stokes equations in the cylinder with the prescribed angular velocity on the bottom
boundary asur = uz = 0 and u� is the solution of the equation

�
1
r

@r ( r @r u� ) +
u�

r 2
� @zzu� = 0

in a rectangle such that u� = ! r at the cylinder bottom and it is equal to zero on the
cylinder side. For ! = 1, the solution is shown in Fig. 7.

Next we zoom-in on a row of �xed balls for such �ows. Assume tha t we can reproduce
u� at a point of the cylinder by using formula (1=r )@� p = u� and then solve the Navier-
Stokes equations locally around the spheres with the corresponding pressure gradient. To
see what happens to the calcite, we begin with 2D-simulation and then consider a small
3D-con�guration.

Figure 7: Angular velo city in a cylinder with a rotating b ottom.

5.3.1. 2D-simulations

For the sake of simplicity, we start with the rectangular domain Dp = ( 0, Lx ) � (0, Ly) with
N= 9 disks of radius R = 0.012 located at the distance dis t = 0.004 from each other —
cf. Fig. 8. It should be understood as being put at some point in the cylinder in Fig. 7 per-
pendicular to the plane of the �gure. The stationary solutio n of the Navier-Stokes equations
(5.1) determined in Dp is driven by the pressure gradient@x p0 = 30=Lx and periodic bound-
ary conditions on top-to-bottom and on left-to-right bound aries. The results are shown in
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Figs. 8 and 9 for

Lx = 2N(R+ dis t), Ly = 2(R+ dis t), � = � = 1=100.

Since the �ow is quite periodic, a one disk only and periodic conditions are suf�cient to
analyse the �ow. Finally we use the velocity �eld computed ab ove and solve the Eq. (5.4)
with � = 0.02 and � = 0.2. Periodic conditions are imposed on the top and bottom bound-
aries. C = 1 on the right boundary. No condition is imposed on the left boundary.

Fig. 10 shows the concentration when the system reached a stationary state, at t= 2 in
the thin case. Much of the calcite is transformed by �rst ball s at the right-hand side. The
process is much more ef�cient if � = 0.2.

5.3.2. 3D-computations

Ideally, in 3 D we have to �nd the solution of the same problem — viz. for an arr ay of balls
in a parallelogram with periodic conditions on the sides for a �ow driven by a pressure

Figure 8: Navier-Stokes solution. Horizontal pressure gradient induces water �ow from right to left.

The color map shows pressure.

Figure 9: Velo city vectors and pressure lines b etween second and third disks for zo omed Navier-Stokes

solution.
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Figure 10: Concentration C - solution of (5.4). Top: � = 0.2 . Bottom: � = 0.02 . After the �rst disk

concentration decreases from 1 to 0.88 if � = 0.02 and from 1 to 0.65 if � = 0.2 .

gradient. However the 2D-simulations show that one can obtain important informatio n by
solving �ow and calcite equation around one ball provided pe riodic conditions are applied.

We now present the solution of the Navier-Stokes equation coupled with the Eq. (5.4)
for only one ball of radius R= 0.012 in the cube of size 0.026 with periodic conditions for
velocities and driven by a pressure gradient� 3=0.026. The last value is similar to the one
in 2D-case. Concentration is equal to 1 on the side where �ow enters the cube and there is
no condition on other boundaries except the condition (5.2) for the ball. Other parameters
are the same as in 2D-simulations — i.e. � = � = 0.01, � = 0.2.

The results are displayed in Fig. 11. The iso-surface of the concentration indicates
that 3D-ball is less effective than cylinder (2D-disk) in calcite elimination. The calcite
concentration is shown at time t = 1. It also shows that 2D-computations do not properly
re�ect the reality and a massive 3D-computation have to be carried out to obtain reliable
results.

It is worth noting that all computations demonstrate the pos itive in�uence of ceramic
balls on the formation of scale in the sense that strongly polarised nuclei give rise to less
surface tension energy, which in turn implies a larger � and hence smaller concentration of
calcite in water passing ceramic balls.

Figure 11: 3D-simulations. Left: Pressure in the �uid for a Navier-Stokes �ow driven by a di�erence of

pressure from right to left. Right: concentration of calcite, solution of (5.4), � = 0.2 . The concentration

from inlet to outlet b oundary decreases from 1 to 0.987. In 2D situation, calcite concentration decreased

from 1 to 0.81 for the same geometry.
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6. Conclusion

We studied the in�uence of the arrays of ceramic balls on the hardness of water and
discovered effects, which can possibly explain the correlation between the balls and the
growth of calcite crystals of CaCO 3. A model to compute the electric �eld at the surface
of the balls is proposed. It is shown that the number of polarised nuclei contributing to
scale formation is considerably smaller than in natural water. Numerical simulations for
a two-dimensional macroscopic model show that the effect of the ceramic balls can be
reproduced in con�gurations studied experimentally and in dustrially. Summarising, we
note that ceramic balls induce a polarisation in the calcite particles thus decreasing the
surface tension energy of the crystals in the vicinity of theceramic balls.
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Appendix A Ginzburg-Landau Model for Phase Change

Crystallisation experiments were performed with the standard (NH4)2CO3 diffusion
method [7] . The properties of sediments in the absence and presence of ceramic balls
have been studied by using electron microscope. In particular, it was observed that the
sediments have a parallelepipedic shape and are of the size 10� 4(m) in average. In the
presence of ceramic balls the sediments size is about 5� 10� 6(m) in average.

The electric �eld near ceramic balls seems to stop the growthof the sediments approx-
imately at 1=20 of the rectangular shape length. Here we want to explain this effect by
using the Landau-Ginzburg model [25] for electric �elds. Let us consider the interaction
of ceramic balls and crystal particle of calcite in later time after crystallisation. In the
Ginzburg-Landau model, the order parameter is the density =  (r, t ) of material. It is
related to the density � as � =  + K, where K = � 0=2 and � 0 is the density of calcite.
The free energy per unit volume is approximated by the polynomial of degree 4

H =
1
2

� 2 +
1
4

u0 4 � h �
1
3

v0 3 +
Ch

2
jgrad j2 (J/ m3), (A.1)

where u0 and v0 are positive constants,� is a negative constant andh electric polarisation
energy for a single molecule[25] . The last term in the Eq. (A.1) represents the free energy
density for non uniform density. Note that Ch is a positive number. These constants imply
that H is a double well potential with meta-stable and stable states, which correspond to
the co-exitance of two phases — viz. liquid and solid ones.
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We suppose that the crystal particles are spheres, so that wedeal with spherical sym-
metry and H is minimised in the domain 
 = f x 2 Rd : j xj 2 (R0,R� )g. Here R0 refers to
the radius of the ceramic ball, R� is a suf�ciently large positive number and d = 1,2 or 3
the dimension of the model. The equation for  is obtained by accepting the fact that its
evolution is described by the derivative of H in  , so that

d 

d t
= � L@ H = L

�
Ch�  � � + v0 2 � u0 3

�
+ Lh, (A.2)

where L is a diffusion coef�cient and Lh an external force added to the system according
to the �uctuation dissipation theorem [25] . This equation is solvable in a suitable Sobolev
space[18] and for a suitable initial and boundary conditions the solut ion is smooth.

Here we assume that the initial condition for  , depends only on the radial coordinate
r 2 (R0,R� ), so that

 ( r, 0) = � K tanh(r � R)

v
t 2

� Ch
, (A.3)

where R2 (R0,R� ) is a parameter. The condition (A.3) yields that the root of th e solution
 = 0 de�nes the boundary between two phases. We recall that K = � 0=2 and R0 is
a suf�ciently small number. Then we set

 (R� , t ) = � K.

Note that in 1 D-case and under conditionsv0 = h = 0, R� = + 1 , as time tends to in�nity,
the Eq. (A.2) takes the form

� + u0 3 � Ch 00= 0,

and has the solution

 int = � Ktanh

�

(r � R)

v
t 2

� Ch

�

. (A.4)

The change of int in the vicinity of R is large compared to the changes at other palaces
— cf. Fig. 12.

Figure 12: Plot of x = r � R7!  int ( x) of (A.4) showing its fast variation near r = R.
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The surface tension energy
 is


 = Ch

Z 1

0

•
d int

d x

‹ 2

d x,

where x = r � R. In general case with spherical symmetry, the Eq. (A.2) takes the form

d 

d t
= L

§
Ch

•
 00+

2
r

 0
‹

� � + v0 2 � u0 3 + h
ª

. (A.5)

We now consider an approximation of the solution (A.4) and denote it by the same symbol
 int ( r � R( t )) . Set Vn := dR=d t and replace  by  int in (A.5). Then up to the �rst order
terms in � t , we have

 int ( x) �  int ( x � Vn � � t )

� t

= Vn �  0
int = L

§
Ch

•
 00

int + � 0
int �

2
R

‹
+ h + v0 2

int � � int � u0 3
int

ª
. (A.6)

Multiplying the Eq. (A.6) by  0
int and integrating the result in x, we arrive at the equation


 � Vn �
1
Ch

= L
•


 �
2
R

� 2K � h � v0
2
3

K3
‹

.

It follows from (A.4) that
Z

 0
int � d x = � 2K,

Z

 2
int  

0
int d x = �

2
3

K3,

and we obtain the following evolution equation for R:

dR
d t

= 2LC

�
1
R

�
1
Rc

�
1
R0

c

�

, R(0) = R0,

where Rc = 
= (hK) is interpreted as the radius of sediments in the presence of ceramic
spheres andR0

c = 3
= (v0K3) is the sediment radius in the absence of ceramic spheres.
Thus the time-asymptotic value of R is Rc=(1 + Rc=R0

c). It is close to Rc becauseRc=R0
c

is small. Our experiments con�rm that the radii of the crysta ls are close toRc = 1.54 10� 5.
This results also support the observation that calcium carbonate crystals got smaller in the
presence of ceramic spheres.

We now construct numerical solution of electro-chemical equation. Multiplying the
Eq. (2.6) by sinh  , we obtain

u := cosh( ), u0 = � (u � 1)
Æ

2
 (u + 1), u(Rb) = cosh(b� 1). (A.7)

This ODE has a complex closed form solution and we will use bold font for complex numbers
and i :=

p
� 1. Thus

x = �
1

p



tanh� 1

v
t u + 1

2
� Ci
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with C such that u(Rb) = b� 1, i.e.

u � 1 = 2(tanh[
p


 (x + Ci)]) 2

= 2
(1 + T2)2 tanh2( x

p

 ) � T2(1 + tanh(x

p

 ))2

(1 + T2 tanh2( x
p


 ))2
+ i(..),

where T = tan(C
p


 ) is extremely large because cosh(b� 1) � O (1013). Hence

u(x) � 1 +
2

tanh2( x
p


 )
, � ( x) �

1
b

cosh� 1

�

1 +
2

tanh2( x
p


 )

�

. (A.8)

The left graph in Fig. 13 shows that x tends to � (Rb + x). The solid line represent the
solution of (A.7) obtained by an approximation method for C0 = 0.017 mol m � 3 and [pH] =
7. The crosses are obtained by (A.8). The electric potentialE with the distance to the ball is
displayed in the left graph in Fig. 13. However, the points close to the balls are not shown
since the corresponding �eld is too big (0.7902 � 107). This is much lower than the one
found in Section 3, since the numerical grid around the ball is not �ne enough. Finally
we studied the dependence ofE on the dimension d. Applying a numerical method to the
Eq. (2.4), we noted no difference in the modelling of a sphere, cylinder or plane.
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Figure 13: Left: (� � ) versus radial distance to ceramic ball. Right: Electric �eld E versus radial distance.
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