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Abstract. We studied the in uence of the arrays of ceramic balls on the hardness of
water and discovered effects, which can possibly explain tle correlation between the
balls and the growth of calcite crystals of 3- A model to compute the electric eld

at the surface of the balls is proposed. It is shown that the number of polarised nuclei
contributing to scale prevention is considerably larger than in natural water. Numerical

simulations for a two-dimensional macroscopic model show that the effect of ceramic
balls can be reproduced in con gurations studied experimentally and industrially. Sum-

marising, we note that ceramic balls induce a polarisation in the calcite particles thus
decreasing the surface tension energy of crystals in the vinity of the ceramic balls.
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1. Introduction

Water pollution is a serious problem everywhere in the world. As a kind of water pol-
lution, scale formations — i.e. hard grayish-white substance, often reduce the ef ciency of
cleaning systems and in ict severe damage on pipes and aqueos closed systems. Exam-
ples of such damage are shown in the left and central picturesin Fig. 1. Various anti-scale
treatments have been developed — cf. Refs[2, 3, 7-9, 11,12, 14, 19, 20], one of which,
a tight aggregate of ceramic spheres, is presented in the rigt picture in Fig. 1. Immersed
in natural water, it prevents the scale formation [13]. The diameter of the ceramic balls
is around 1 cm and their surface is covered by inorganic oxides, whose main ingredients
are »,and . The latters produce free electrons by the reaction ! A . The
electrons, in turn, are captured by the hydrogen ions in water  * I, thus leaving
a considerably thin layer of very near the surface of the balls.
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Unlike chemical treatments, this approach does not change lie water compaosition, only
the size of the calcite aggregates — cf. the right picture in Fg. 2. However, in spite of en-
couraging outcome of various experiments, theoretical ba&ground of the method is open.

1.1. The process and the approach

What is the cause of scale formation? Calcite particles forncrystals by a phase-change
phenomenon. Scale is a more stable state for the crystal paitles of calcium carbonate
( 3, calcite being its most stable crystal form) obtained by adrering to the surface
of another material to release surface tension energy. Expemental measurements [22]
show that the ceramic spheres in water generate an electric eld near the layer caused by
electrolytic solutions such as water containing ** and 3 lons: the layer of attracts

** jons thus changing the crystal structure of calcite. The cngtal particles close to the
surface of a ceramic sphere are exposed to an electric eld ad store this additional pola-
risation energy which changes the crystal structure makingscale formation less favourable
energetically. Therefore, our investigation is focused onan electric eld and also on pola-
risation energy with special emphasis on surface tension eprgy. This approach is referred
to as the contact model.

Finally, as soon as it becomes clear that the slate-capableaicite concentration dimin-
ishes in the vicinity of the ceramic balls, the ef ciency of various arrangements of ceramic
spheres has to be studied. This is done by using a macroscopinodel and an ad-hoc bound-
ary condition for the calcite concentration. This last section is mostly numerical.
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1.2. Plan

The goal of this work is to clarify the mechanism of such devies preventing the scale for-
mation in natural water. This phenomenon is described in Sedion 2 by a Poisson-Boltzmann
equation with appropriately chosen physical constants. Sdving the equation numerically,
we obtain the electric eld on the surface of ceramic balls and, consequently, the polarisa-
tion energy generated in particle.

In Section 3, we show that the polarisation energy gives riseto an extraordinary sup-
pression of nucleation rate, which leads to a substantial derease of nuclei contributing to
the scale formation.

In Section 4, a framework of crystal lattice model describing a structure of particle is
introduced and used to compute the deviation of the surface ension energy based on the po-
larisation energy. This means the decrease of the surface tesion energy which contributes
to reduction for formation of the scale.

Section 5 deals with the distribution of polarised nuclei carried by the water ow
through an array of ceramic balls in a pipe. Numerical simulation of this process allow
to clarify the behavior of polarised nuclei and provide important information concern-
ing the installation of the ceramic balls in pipes. In appendix, we use a time-dependent
Ginzburg-Landau model to discuss the growth of particles wih the polarisation. Under
the assumption that the radius of particle is sphere, it is stown that the time-asymptotic
radius of particle is comparable to the radii of the crystals observed by using the standard

4)2 3 Gas Diffusion Method 7]. This proves the validity of the contact model in the
method.

Let us note that H. Kawarada provided the modelling of the problem and O. Pironneau
carried out numerical experiments, the rest was done togetter.

2. Electro-Chemical Phenomena Near Surfaces of Ceramic Sphe res in Water

It is known that the surface of ceramic spheres placed in wate is highly charged. Since
ceramic surface is covered with inorganic oxide, it supplies hydroxyl groups near the sur-
face, which are charged positively or negatively accordingto the . The surface of
a ceramic sphere is normally charged negatively. Therefore ** ions are attracted to the
surface and form a cloud. Similarly ; ions are pushed away from the surface. Negative
charges on the surface of the ceramic sphere and positive clads of ** ions combine
to form a diffused electric double layer, which brings about an electric potential near the
surface of the ceramic spheres in watef 6, 15].

2.1. Modeling

Letx 7! (x) be the electric potential de ned at each point x outside a disk in R? or
sphere inR3.

In natural water the concentration of and 4
constant C;. Throughout the paper, we assume thatC, = 0.017

A is uniform and equal to the same

3. However, if
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ceramic balls are present, the concentrationsC; of ** and C, of , are neither equal
nor constant because of the electric eld in uence. Nevertheless, they are connected as
CG = CO2 due to conservation of ux — cf. [16]. It follows that the charge density x 7!
“(x) made by C, and G, is

=ZIHG &),
where Z is the number of electric charges of anion,z= 2 for ** and F=96485
is the Faraday constant[6,15]. Conservation of ux yields that C; = Cye® , C, = Cye P
with b = ZF=(RT), where R= 8.3145 denotes the perfect gas constant andT
is the absolute temperature[16]. We note that if T = 293, then b= 79.211. Thus

~= 2ZF G sinh(b ). 2.1)

In addition,  satis es a Poisson-Boltzmann equation — viz.

= — 2.2)

where is the Laplace operator,” the relative permittivity of water and " the permittivity
of vacuum:
=785, ,=8.8542 10 12 . (2.3)

2.2. Boundary conditions

Far away from the ball or disk the function  takes value 0. However, on the boundary
of the ball or disk this value, denoted by 4, depends on the inorganic oxides forming the
surface of the ceramic sphere or disk, so that

;= 0.0591 0.0295log[P( »)].

This equation is derived from the Nernst equation [22, Eq. (20-2)]. Let P( ,) refer to the
partial pressure of ,. Here we assume thatP( ,) = 1 (atmosphere) and note that the
model under consideration works with the parameter G, in the range 0(0.01) mol/m 3,

2.3. Numerical analysis of the Poisson-Boltzmann Problem

We assume spherical or cylindrical symmetry of the domain, which is determined by
radius r := jxj 2 (Ry,+1 ) and typically R, = 0.01. With spherical (d = 2) or cylindrical
(d = 1) symmetry of (2.1), the Eq. (2.2) takes the form

2@(°@ )+ AGsinh(b )= 0, Ry)= 1 (Ri)=0,

where A= 2ZF=( ;). We note that d = 0 corresponds to a planar boundary.
The previous considerations show thatA= 5.5527 10%, b= 79.211 and introducing
a new function = b , we rewrite the above problem as

@r'@ )+ r%AGbsinh( )=0, (R)=b ;, (R )=0. (2.4)



428 H. Kawarada and O. Pironneau
Neglecting the curvature effect, we taked = 0 and consider the equation

% sinh =0, (RyY=b; (R)=0, (2.5)
where = AGb. Multiplying it by ~ ®and integrating the resulting equation yields

®- cosh +C.

NI

Note that the constant C is equalto  , since

!im (r)= Ilim (r)=0.

ril r'i
It follows that %= P 2 (cosh 1) and, consequently,
0 fE
(Rp) = 2 (coshlb ;) 1). (2.6)

The electric eld at the surface of the ball can be now computed as

@ 1,
E= —(Rpy)= — AR
@( b) 5 (Rp)
U 2Ac, &£
2A
= —CO cosh( 4.6813 )
b £
= 0.3744 10" C,cosh(4.6813 ). (2.7)
It depends on and G, and for b = 79.211 the values of E are presented in Tables 1
and 2.
E G =0.017
2 5 7 9 11

E 8.179 10%® 9.169 10 9.894 108 1.068 10 1.151 10%®

G 0.001 0.01 0.05 0.1
E | 1.984 10® 2.400 10 1.697 10" 2.400 10

Remark 2.1. The Eg. (2.5) shows that
TR, = Esinh(b 1)= 5.5527 10%C,sinh(4.6813 )= 0.8033 10%.

The calcite crystal is approximately 5 angstrom wide. In this range, the change of the
electric eld is proportionalto  %%and can be essentially different at various points. What is
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then a reasonable value forE? The numerical solution of (2.4) is reported in the appendix .
To obtain accurate results, an extremely ne grid has to be used. Our numerical experiments
provide a lower value for E, which yields

10" < E< 10%.
Experimental measurements in[22] con rm this analysis.

In what follows we set E  10°.

3. Extraordinary Suppression of Nucleation Rate in Contact Mo  del

Let us assume that calcite particles are spherical with radis r. By G we denote the
difference between the Gibbs free energy of the electrolytc solution composed of Cd™*,
CO,; inwater and the one for coagulated calcium carbonate in water. The term  depends
on the ions concentration and G is negative for the solidi cation usually found in city
water — cf. Subsection 3.3.

3.1. Activation energy of calcium carbonate particles

Let refer to the surface tension energy between calcite and wate Then for coagulated
calcium carbonate, the total free energy change g can be written in the form

4
g=4 r?+—r3 G.
3
The term g grows along with the particle and attains its maximum

16 3
“ 3 (o (3:1)
at

r= 2. (3.2)

The value g represents the energy required for the particle to become a micleus[4]. Itis
the activation energy.

3.2. Nucleation caused by electric eld of ceramic sphere

Nucleus is an original form growing up into a crystal particl e. Nucleation means that
some suf ciently small coagulated particles with the activation energy g become isolated
nuclei. The number of nuclei generated by nucleation per unit time is de ned by

b <

| = lgexp % ,
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where | is the total number of the coagulated particles. The nucleaion rate is de ned by
I=lg [21, 25]. Here, we want to determine the effect of a polarisation energy D added to
g,onl.
The electric eld E at the surface of the ceramic balls brings about a polarisaton energy
density [23] in calcite particles near the ceramic balls
nCn

D= 70 E2 (I m) (3.3)

with ¢ = 9.1 for calcite. The combination of D and the activation energy g leads to
a new activation energy — viz.

~ 4 3
= + —r °D,
9 g 3

and new nucleation rate T = lgexp( ( g )=kT).
In order to clarify the in uence of the perturbed energy on th e nucleation rate, we

consider the ratio
~ o <
I [o] g q . 4 3 D
- = ex — _Z -8 with = —r °—. 3.4
[ P kT a 3 kT (3.4)

3.3. Suppression of nucleation rate
Let us recall experimental values of the main parameters usd [5,17,22,28].
Surface tension (free) energy: = 57 10 3 (J/ m?).
Gy = 47.4251(kJ=mol)= 1.284 10°J/m?3).
G= Gy RTlogCi.

Since G, G, the Eq. (3.2) implies r > 0.8903 10 1°. Moreover, taking into account
(3.3) and (3.4) and the inequality E> 10°, we write

q> 3.072 10 E%?> 3.072

and, consequently,

T

|—= exp( q) < 0.046.
This substantially diminish the number of nuclei generating scale formations. Thus an
extraordinary suppression of nucleation rate occurs due tothe contact model.

4. Crystal Lattice Model

Another contribution to the polarisation energy for scale prevention is the decrease
of surface tension energy of the particle in water due to the gructural change of calcite
caused by the perturbed energy. To study this phenomenon, weadopt Ono crystal lattice
model [24] and apply it to the crystal structure of calcite. This model demonstrates a good
agreement with experiments.
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4.1. Helmholtz free energy for crystals

The 3-dimensional crystal lattice model assumes that the cystal is composed of mole-
cules arrayed at lattice points and only the neighbouring molecules interact with each other
— cf. Fig. 3.

oo

TTY

Let S denotes the entropy. A small state entropy appears under speial restrictions,
removing of which leads to a variety of large entropy states. The crystal tends to stay at
a minimum energy state at temperature OK. All molecules try to Il in the empty positions
— i.e. the white holes in the left picture in Fig. 3, so that the crystal becomes a complete
crystal. Let Xy be the number of such molecules. In this case, the number of co guration
isW = 1. When temperature increases, some molecules leave blackdies and try to occupy
white ones. Let X; be the number of such molecules. According to[ 26], the total number
of different con gurations is

X!
W(Xo, Xl) = )(I—y
1! (X X!
and the Boltzmann principle claims that
S= klogW(Xg, X1).
Assuming the uniform structure of layers and applying the Sterling formula, we obtain
S XokfZlogZz+(1 Z)log(l 2)g,

where Z = X;=X, and k is Boltzmann constant.
On the other hand, if the number of adjacent molecules dependng on the lattice struc-
ture is ~, then the internal free energy U of the system is

e_
U= ="X,Z?%
2
where e is the potential energy between the adjacent molecules. Arber et al. [1] show
that e= 4 10°%= ,where = 1.625 102® m 2 s the density of the calcium carbonate.

Therefore, in this case, the Helmholtz free energyF is

F=U TS
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It should be noted that crystals are composed by many layersbut so far we considered
the free surface of the plane layer parallel to the other lattice layers. To analyse a stack of
lattice layers we label them from 1 to m. Let A be the area of each layer,n the number of
lattice points per unit area on each layer, and n; the number of molecules included in a unit
area of i-th layer. The total number of molecules is denoted N. Then x; = n;=n represents
the concentration of molecules on the unit surface ini-th layer.

4.2. Multi-layered crystal

In order to determine the internal free energy of a crystal made of a stack of 2-dimen-
sional layers, we observe that each molecule has either 6 ngihbor molecules from the same
layer or 3 ones from each adjacent layer.

The particle pairing number between i-th layer and its adjacent neighbour i + 1 is
3nAX;;1Xj, whereas the one with i-th layer 6nAxi2. Removing the pairs counted twice,

we obtain
™

U R ! ¢
U= 3enA x; x;+ EXZ + Xi X+ > Xi 1+ Xis1 , (4.1)
i=2

xn
S= nAk Xiinx;+(1 x)In(1  x;) .
i=1

According to the contact model [24], the total energy F is the sum of Helmholtz free
energy F = U TS and the polarisation energy h x;, where h= D= and D is de ned in
(3.3). Thus

- . . ‘ > . . (TM
F=nAhx, 3enA x; x;+ EXZ + X; X+ > Xi 1+ Xjs1
i=2

xn
+ TnAk X In Xi+(l Xi)ln(l Xi) .
i=1

4.3. Minimisation problem

Let .
= 12ze+ kTIn —— 4.2)
1 z

be the chemical potential per particle. The stable state of he system is obtained by min-
imising the total energy F under the constraint that the full chemical potential energy
nA T, x;is constant.

Fora= kT=e= 0.01575and = h=e, the optimality conditions have the form

X1 z
3(2x,+ x,)+ aln = 12z+ aln ——, 4.3
(2%, + xp) + aln - T (43)

X1

X z
3(xq+ 2%+ xg) + aln 2= 127+ aln —. (4.4)

X2
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X z
3(Xj 1+ 2%+ Xj41)+ aln—— = 12z+ aln —, (4.5)
X; 1 z
3(Xy 1+ 3%X,)+ aln —"_ = 127+ aln —2 (4.6)
m 1 m 1 Xg 1 z '
If = 3z then x;=2zi=1, ,mis the solution of the above problem.
Assuming that the number of layers is large and + 3z small, we setx; = z+ xioand
0=+ 3z, sothat
1+ x%=z x0 X0
%+ 3 2x§’+xg=aln0—1 a =+ |
1 x=(1 2) z 1 z
1+ x%=z x0 X0
3 x% +2x% x> —an—————— a 4+ —— |
1 P 1 xE=1 z) z 1 z
1+ x%=2 x% X0
3x%,+3x% =ah—————— a 2+ T
1 x0=1 2 z 1 z

Note that for the uniform grid of size dy the nite difference approximation of u

d?u=dy? = Ois u; (u ; 2u + U,;)= y2. This indicates that the above formulas
represent nite difference discretisation of the problem

d2u T -
3 v (y)+ 4 12 y? =0 2(0,1
ydyz(y) a o+ o— y- u(y)=0, y2(0,1),
0
W)= —, May=o,
3 dy

The solution of this problem has the form

u=ceY+ be VY
with constants

Vv
¢ ¢ 0, 2 0
I S S O U L
3y2z 1 z 3(1+e 2) 3(1+e 2)
Thus Y%
0 t a
x0 u(ih) —exp I ——
: 3 3z(1 2)
and . ‘ v
1 a
Xj z+ —+2zZ ex P a—
! 3 P 3z(1 2)

This solution can be used to determine the deviation of the suface tension energy

arising because of polarisation energy. The Helmholtz freeenergy for each layer of the
uniform phase (bulk) is de ned by

F=nA 62%2 e+kT fz Inz+(1 2)In(1 2)g, 4.7)



434 H. Kawarada and O. Pironneau

where z is the density of molecule per unit surface — i.e. the value atthe bulk of the
removing-effect surface. The term 6z2 above is obtained by settingx,, = X,, 1 = z in the
sum from the right-hand side of the Eq. (4.1). Differentiati ng F in z, we may regard as
the chemical potential [24] and
= L ﬁ: 12z e+ kT Ini.
nA dz 1 z

4.4. Finding surface density and parameter

For calcium, the experimental value of molecular entropy at room temperature is
4.54(3/ K/ mol). Accordingly, it is 4.54 =N, per particle, where N, refers to the Avogadro
number [27]. Using this number in its theoretical representation

3 ° < o <«
4.54 X X X X
s ok ZEpZy 1 Z22pg 22

Na Xo Xo Xo Xo

we ndoutthat X; = 0.2348X,. Hence, the number of particles per unit surface(X;=X;)?=
is

z = (0.2348)%= = 0.3806. (4.8)
In addition, recalling = h=e= aD=(kT ), we obtain
= 0.1007 10 %°F2. (4.9)

4.5. Deviation of particle surface tension energy in contac t model

According to [24], the surface tension energy is de ned by

F mF o
n

A (% 2).

(X1, X2, Xm,2) =
i=1

The sensitivity of  with respect to x; and z is determined as

and according to the de nition of E @ =@; = O0fori= 1,2, ,m at equilibrium point.
Hence

xn xn
ng (Xi 20z n (1) z

z
= mn 12z e+ kT In—— z
1 .
i=1 1

z @

Recalling the Eq. (4.2), we compute @ =@, so that

° <X xn
= n 12e+ z(lsz) 1(xi 2) z= n% z 1(xi z). (4.10)
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4.5.1. Representation of =

Let us note that the additional energy h = (@ =@) z corresponds to the increase of the
chemical potential  on the surface layer andh is related to the polarisation energy de ned
in(3.3)by D= h.

As reported in[10], the crystal corresponding to this increased chemical potatial seems
to be aragonite crystal. The difference between G(calcite) = - 269.8( kcal/ mol) and

G(aragonite) = - 269.55 (kcal/ mol) — cf. [17]), is in fact close to the polarisation energy

D— 269.8 ( 269.55)= 0.25(kcal/mol) = 1.046(kJ/mol) = 2.835 107 (J/ mq).
This approximately corresponds toD if E= 10°.

Using only the rst layer in (4.10) we have = nh(x; z),wheren= 23 isthe
surface density of particle. Therefore,

- D
— = 2_3—(X1 2),

with  provided in Subsection 3.3.

4.5.2. Computation of =

Following the considerations of Section 2 and the Eq. (4.9), we setE= 10 and =
0.1007 2, thus obtaining

. < Vv
X, 7= —+7 exp . —  =02802 2+03278.
3 3z(1 2)
It follows that = = 0.807 2( 2+ 1.134).

Higashitani and Oshitani [11] noted that the perturbation energy on the particle of
calcium carbonate is ef cient in the prevention of scale formation only if , G and
P(H,) are located in a speci ¢ intervals. We observed that if 2= 2.553, then = 1.
It follows that + and (1+ = ) 0. The latter means either the absence of the

surface tension energy or its substantial reduction at leas.

5. Numerical Simulations of Calcite in Flows through Cerami ¢ Spheres
Structures

The above considerations show that the polarisation in icts the change of the calcite
particles in the vicinity of ceramic spheres. Since these chnges happen at very fast speed,
the vorticity near the surfaces of ceramic spheres increasethe number of particles affected
by polarisation. If the ow has a moderate Reynolds number, it can be well modelled by
the Navier-Stokes equation (5.1) with the zero velocity on the balls. The concentration of
calcite is modelled by a convection diffusion equation, but the boundary conditions have
to re ect the fact that the presence of ceramic balls diminishes the concentration and also
that the vorticity is high — i.e. that the upstream face of the balls is more active than its
downstream side.
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The purpose of this section is to measure the macroscopic eéict for an array of ceramic
ballsin the ow of calcite in water. We conducted two types of simulations, the rst of which
concerns in ow on the right and out ow on the left in a box-lik e container. The parameters
are the geometrical arrangements of the ceramic balls and tle pressure difference between
the inlet and the outlet and the size of the container. In the second one, we attempt to
numerically replicate our experiments. It is a cylindric container with a rotating magnet
below it, which induces the rotation of the balls around the axis of the cylinder. In addition
to rotating velocity, we also use various geometrical paraneters.

In all simulations, the polarisation ef ciency of the ceram ic balls is an important param-
eter. It is not known and must be guessed. Hence this sectionemains phenomenological,
indicating a trend rather than experimentally comparable numbers.

5.1. The partial differential equations

Flows are described by the Navier-Stokes equations

@u+uru+rp u= 0, (5.1)
r u=0,
where p is the pressure andu the velocity. The reduced viscosity is xed at = 1=500 and
velocity u= Ois given att = 0. It is also equal to zero on the spheres (disks) and is given
on the walls of the container except at the inlet and outlet wh ere we prefer to impose the
pressure gradient and the zero tangential velocity.

The water is charged with calcite with initial concentratio n G, at the inlet pipes. Ev-
erywhere else the concentration of calcite without the decrease of surface tension energy
satis es the inequality C(x,t) C,. Without loss of generality, we assume that G, = 1.
The reaction reducing the surface tension energy of calciteoccurs mainly within a very thin
boundary layer around each sphere and is modelled by the equion

@c o
— = C, 5.2
a- (5.2)
where n is the normal to the spheres and |, the normal stress in the uid —i.e.
. <
@ . . @y °
n=pn+ —, | n]2=p2+ 2 =
@n @n

Naturally, a strong pressure shall bring calcite closer to te balls and the strong tangential
part of the normal stress slows down calcite particles forchg them to stay longer near the
balls. The coef cient is a decreasing function of , which governs the absorption rate due
to magnetic spheres. It also depends on the reaction rate =  of the calcite transformation
and, to some extend, on the time calcite spends near a ball — e. on the uid velocity u.
Concentration C satis es the equation

@c+ur C  C=0, (5.3)
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and the conditions that C = 0 at the walls, C = G, at the in-pipe, @C=@ = 0 at the exit
pipe and the Eq. (5.2) on the spheres. The Eg. (5.3) can be refomulated in variational
form as follows: Find C such that for all C the equation

Z Z
c(@C+ur C)+ rCrC+ i njCc=0 (5.4)

spheres

holds.

Remark 5.1. At present there is no reliable formula describing interms of . The molec-
ular diffusion  has to be measured as well but it is small in all computations kelow we set

5.2. Cavity ows through ceramic balls structures

In the parallelepiped shaped container of sizeX, Y, Z, =1 0.7 1(in meters)water
ows from the in-pipe on the right to the exit pipe on the left. We assume thatY, = T,=2,
the radius of the spheres isr = 0.012, the diameter of the pipes w = 0.1 and the centers
of in ow and out ow pipes are, respectively, located at the p oints (X, Y, + w=2, Z,=2)
and (0,Y, + w=2,7,=2) — cf. Fig. 4. The number of spheres in the directionsx, y,z are
respectivelymg, n,, 0,. They are uniformly distributed in the parallelepiped of si ze x, Y., Z.
and centered at the points X,, Y,, Z,, so that there are also spheres at the corners of the
parallelepiped. The problem is considered in 2D and in the end of this section we attempt
to measure the errors connected with such an approximation.

A pressure gradient is imposed between the inlet and the outét p;, Poyt = 10. Al-
though the gradient value is arbitrary, it xes Reynolds num ber in the range of a few hun-
dreds, which is compatible with the mesh resolution of about 15000 vertices used here.
Because of pressure gradient, the horizontal velocity depads on the layout of the spheres
and is around 7. Thus the Reynolds number connected to the dik diameter is 70 and 3500,
depending on the domain size.

Fig. 5 shows the concentration levels at E 2.5 after 50 time steps for = 0.02 and
0.2. The change of the calcite concentration is shown by diferent colors varying from red
to blue. It is more substantial for = 0.2. Fig. 6 shows the concentration levels at E 2.5
after 50 time steps for = 0.2 for a different geometrical con guration. It is clear th at
the constructions allowing to ow the uid through the conta iner without contacts with
the balls is a wrong design. The effect of a stronger pressureyradient is obvious and not
shown here. Above a certain threshold there is only a partialtransformation of the calcite,
unless the number of rows of balls is increased. Below the theshold the calcite lingers
unnecessarily long near the balls.

5.3. Rotating ows in cylinders with ceramic balls

In our experiments, a rotating magnetic agitator located below the container induces
a rotational ow with an added magnetic agent in a circular cy linder. Several layers of
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not rotated with the ow magnetically coated balls are insta lled near the cylinder bottom.
To simplify simulations we assume that the cylinder bottom rotates but balls and vertical
boundary of the cylinder do not move.

Ignoring the balls and using cylindrical coordinates, we can write the solution of the
Navier-Stokes equations in the cylinder with the prescribed angular velocity on the bottom
boundary asu, = u, = 0 and u is the solution of the equation

u

2@reu)+ S @u =0

in a rectangle such thatu = ! r at the cylinder bottom and it is equal to zero on the
cylinder side. For! = 1, the solution is shown in Fig. 7.

Next we zoom-in on a row of xed balls for such ows. Assume that we can reproduce
u at a point of the cylinder by using formula (1=r)@p = u and then solve the Navier-
Stokes equations locally around the spheres with the correponding pressure gradient. To
see what happens to the calcite, we begin with 2D-simulation and then consider a small
3D-con guration.

Tso¥alue

| ]

WL 1077

5.3.1. 2D-simulations

For the sake of simplicity, we start with the rectangular domain D, = (0, L) (O, Ly) with
N=9 disks of radius R = 0.012 located at the distance di;; = 0.004 from each other —
cf. Fig. 8. It should be understood as being put at some point h the cylinder in Fig. 7 per-
pendicular to the plane of the gure. The stationary solutio n of the Navier-Stokes equations
(5.1) determined in D, is driven by the pressure gradient@p, = 30=L, and periodic bound-
ary conditions on top-to-bottom and on left-to-right bound aries. The results are shown in
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Figs. 8 and 9 for
Ly = 2N(R+ disy), Ly = 2(R+ digy), = = 1=100.

Since the ow is quite periodic, a one disk only and periodic conditions are suf cient to
analyse the ow. Finally we use the velocity eld computed ab ove and solve the Eq. (5.4)
with = 0.02and = 0.2. Periodic conditions are imposed on the top and bottom baund-
aries. C = 1 on the right boundary. No condition is imposed on the left boundary.

Fig. 10 shows the concentration when the system reached a st#onary state, at t=2 in
the thin case. Much of the calcite is transformed by rst ball s at the right-hand side. The

process is much more ef cientif = 0.2.

5.3.2. 3D-computations

Ideally, in 3D we have to nd the solution of the same problem — viz. for an arr ay of balls
in a parallelogram with periodic conditions on the sides for a ow driven by a pressure

50V alue
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C =02 = 0.02
1 0.88 = 0.02 1 065 =02

gradient. However the 2D-simulations show that one can obtain important informatio n by
solving ow and calcite equation around one ball provided pe riodic conditions are applied.

We now present the solution of the Navier-Stokes equation caipled with the Eq. (5.4)
for only one ball of radius R= 0.012 in the cube of size 0.026 with periodic conditions for
velocities and driven by a pressure gradient 3=0.026. The last value is similar to the one
in 2D-case. Concentration is equal to 1 on the side where ow enters the cube and there is
no condition on other boundaries except the condition (5.2) for the ball. Other parameters
are the same as in D-simulations —i.e. = = 0.01, = 0.2.

The results are displayed in Fig. 11. The iso-surface of the ancentration indicates
that 3D-ball is less effective than cylinder (2D-disk) in calcite elimination. The calcite
concentration is shown at time t = 1. It also shows that 2D-computations do not properly
re ect the reality and a massive 3D-computation have to be carried out to obtain reliable
results.

It is worth noting that all computations demonstrate the positive in uence of ceramic
balls on the formation of scale in the sense that strongly pohkrised nuclei give rise to less
surface tension energy, which in turn implies a larger and hence smaller concentration of
calcite in water passing ceramic balls.

3D
=0.2
2D
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6. Conclusion

We studied the in uence of the arrays of ceramic balls on the hardness of water and
discovered effects, which can possibly explain the correlion between the balls and the
growth of calcite crystals of 3. A model to compute the electric eld at the surface
of the balls is proposed. It is shown that the number of polarised nuclei contributing to
scale formation is considerably smaller than in natural water. Numerical simulations for
a two-dimensional macroscopic model show that the effect ofthe ceramic balls can be
reproduced in con gurations studied experimentally and in dustrially,. Summarising, we
note that ceramic balls induce a polarisation in the calcite particles thus decreasing the
surface tension energy of the crystals in the vicinity of the ceramic balls.
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Appendix A Ginzburg-Landau Model for Phase Change

Crystallisation experiments were performed with the standard (NH,),CO; diffusion
method [7]. The properties of sediments in the absence and presence ofetamic balls
have been studied by using electron microscope. In particudr, it was observed that the
sediments have a parallelepipedic shape and are of the size@ #(m) in average. In the
presence of ceramic balls the sediments size is about 510 8(m) in average.

The electric eld near ceramic balls seems to stop the growthof the sediments approx-
imately at 1=20 of the rectangular shape length. Here we want to explain this effect by
using the Landau-Ginzburg model[25] for electric elds. Let us consider the interaction
of ceramic balls and crystal particle of calcite in later time after crystallisation. In the
Ginzburg-Landau model, the order parameter is the density = (r,t) of material. Itis
related to the density as = + K, where K= =2 and  is the density of calcite.
The free energy per unit volume is approximated by the polynamial of degree 4

1 . :
h 5w 84 %Jgrad i (Imd), (A1)
where ug and vy are positive constants, is a negative constant andh electric polarisation
energy for a single molecule[25]. The last term in the Eq. (A.1) represents the free energy
density for non uniform density. Note that G, is a positive number. These constants imply
that H is a double well potential with meta-stable and stable states, which correspond to

the co-exitance of two phases — viz. liquid and solid ones.



Scale Prevention by Ceramic Balls 443

We suppose that the crystal particles are spheres, so that weleal with spherical sym-
metry and H is minimised in the domain = fx 2 R% : jxj 2 (Ry, R )g. Here R, refers to
the radius of the ceramic ball, R is a suf ciently large positive numberand d = 1,2 or 3
the dimension of the model. The equation for is obtained by accepting the fact that its
evolution is described by the derivative of H in , so that

d
rra L@H=L G, +vg 2 ug 3+ Lh, (A.2)
where L is a diffusion coef cient and Lh an external force added to the system according
to the uctuation dissipation theorem [25]. This equation is solvable in a suitable Sobolev
space[18] and for a suitable initial and boundary conditions the solut ion is smooth.
Here we assume that the initial condition for , depends only on the radial coordinate

r 2 (Ry,R), so that v

t 2
(r,0)= Ktanh(r R} —, (A.3)
GCh
where R2 (Ry, R ) is a parameter. The condition (A.3) yields that the root of th e solution
= 0 de nes the boundary between two phases. We recall thatK = (=2 and Ry is

a suf ciently small number. Then we set
(R,t)= K.

Note that in 1 D-case and under conditionsvy = h= 0, R =+ 1 , as time tends to in nity,
the Eq. (A.2) takes the form
+ Uo 3 Ch 00= 0,

and has the solution Vv
t

2
int = Ktanh (r R —

G,

The change of ;,; in the vicinity of Ris large compared to the changes at other palaces
— cf. Fig. 12.

(A.4)

x=r R7!' (x) r=R
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The surface tension energy is
Z 1 L]

<
d int 2
= d
G 0 dx X
where x = r R. In general case with spherical symmetry, the Eq. (A.2) takes the form
§ < a
d 00, 2 o 2 3
F:LC" +F + Vg U “+h . (A.5)

We now consider an approximation of the solution (A.4) and denote it by the same symbol
int(r R(1). SetV, := dR=dt and replace by ;,; in (A.5). Then up to the rst order
termsin t, we have

int(x) int (X Vn t)

gt . < a
2
— 0 _ 00 0 2 3
=Vo i =L Gy int T int ﬁ +h+v int int Yo jn¢ - (A.6)
Multiplying the Eq. (A.6) by iom and integrating the result in x, we arrive at the equation
. <
1 2 2
V, —=L = 2K h y=K3
G, R 3
It follows from (A.4) that
z z 5
0 — 2 0 — 3
int dx= 2K, int inth_ §K '

and we obtain the following evolution equation for R:

dR 1 1 1
—=2LC = — — , R0O)= Ry,
dt R R, R (9= Ro
where R, = =(hK) is interpreted as the radius of sediments in the presence of eramic

spheres anng = 3 =(vK?3) is the sediment radius in the absence of ceramic spheres.

Thus the time-asymptotic value of Ris R,=(1 + RC:Rg). It is close to R, becauseRc:Rg
is small. Our experiments con rm that the radii of the crysta Is are close toR. = 1.54 10 °.
This results also support the observation that calcium carlonate crystals got smaller in the
presence of ceramic spheres.

We now construct numerical solution of electro-chemical equation. Multiplying the
Eqg. (2.6) by sinh , we obtain

g
u:=cosh( ), u’= (u 1) 2 (u+1), u(Ry)= cosh(b ;). (A7)

This ODIE has a complex closed form solution and we will use ball font for complex numbers

andi:= 1. Thus v
t

i1
u Ci

1
x= p=tanh !
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with C such thatu(Rpy)= b 4, i.e.

u 1

2(tanh[” ~(x+ Ci)]) 2
(1+ T2)2tanh2(xP ) T2(1+ tanh(x” )2
2 5 P +i(..),
(1+ T2tanh“(x" 7))2

where T = tan(Cp 7) is extremely large because costb ;) O (10%). Hence

u(x) 1+—|D—2 —,  (x) L cosh ! 1+—|D—2 . (A.8)
tanh?(x" 7) b tanh?(x" 7)

The left graph in Fig. 13 shows that x tends to (R, + x). The solid line represent the
solution of (A.7) obtained by an approximation method for C, = 0.017 molm 2and =

7. The crosses are obtained by (A.8). The electric potentialE with the distance to the ball is
displayed in the left graph in Fig. 13. However, the points close to the balls are not shown
since the corresponding eld is too big (0.7902 10°). This is much lower than the one
found in Section 3, since the numerical grid around the ball is not ne enough. Finally

we studied the dependence ofE on the dimension d. Applying a numerical method to the
Eq. (2.4), we noted no difference in the modelling of a sphere, cylinder or plane.

potential
° °
° °
8 8
T T
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