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Abstract. Two weak formulations for the Lamé system with the boundary conditions

of third and fourth types are proposed. It is shown that the regularity of the solutions

and properties of the boundary surface guarantee the equivalence of variational and

standard formulations of the problem. Moreover, if the boundary of Ω is a Lipschitz

polyhedron or if S (x ) = 0 on ∂Ω, the decoupling results of [8] are derived from the

weak formulations.
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1. Introduction

Let Ω ⊂ R3 be a bounded simply-connected domain with a connected piecewise C2,1-

smooth boundary ∂Ω. An isotropic elastic medium characterised by the Lamé constants

λ > 0 and µ > 0, occupies Ω. Given a source term f ∈ L2(Ω), we consider the linearised

elasticity equation

−∆∗u −ω2u = f in Ω, (1.1)

where u = [u j(x )]
3
j=1

is the displacement field, ω > 0 the angular wavenumber, and the

operator ∆∗ is defined by

∆
∗u := µ∆u + (λ+ µ)∇(∇ · u) = −µ∇∧ (∇∧ u) + (λ+ 2µ)∇(∇ · u), (1.2)

where ∧ is the cross product of two vector fields.
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The Lamé system (1.1) is complemented by the boundary conditions of different kinds

[6,7]. The first kind boundary condition has the form

u = 0 on ∂Ω.

The second one reads

Tu = 0 on ∂Ω,

with the traction operator T,

T u := λ(∇ · u)ν+µ(∇u +∇uT )ν = 2µ∂νu +λν∇ · u +µν∧ (∇ ∧ u),

where T is the transposition operation, ν ∈ S2 the outward unit normal vector to ∂Ω, and

∂ν a boundary differential operator defined by

∂νu := [ν ·∇u j]
3
j=1.

The equations

ν · u = 0, ν∧ Tu = 0 on ∂Ω, (1.3)

and

ν∧ u = 0, ν · Tu = 0 on ∂Ω (1.4)

represent the boundary conditions of the third and fourth kind, respectively.

Here, we mainly focus on the Lamé system (1.1) provided with the boundary condi-

tion (1.3) or (1.4). It is known that the elastic body waves can be decomposed into two

parts — viz. pressure and shear waves. These waves generally coexist and simultaneously

propagate with different speeds and in different directions. In recent work [8], a complete

decoupling of the pressure and shear waves is established for the third and fourth boundary

conditions under geometric conditions on the boundary of an impenetrable scatterer. This

allows to reformulate the Lamé system as Helmholtz and Maxwell systems.

The goal of this work is to revisit the decoupling results [8] in order to obtain new rel-

evant variational formulations and to show the well-posedness of the corresponding vari-

ational problems. We observe that the problems (3.5) and (3.11) are well-posed without

any geometric assumption concerning the boundary surface. Furthermore, under an as-

sumption about the regularity of the solution, the variational formulations are rewritten as

Helmholtz and Maxwell systems. If the boundary satisfies additional geometric conditions,

the variational formulations and the original Lamé system are equivalent. This means that

the decoupling results deduced from the Lamé system in [8] are retrieved from a weak

formulation perspective.

To the best of our knowledge, the variational formulations (3.5) and (3.11) are novel

and they can find numerous applications in numerical simulation of the Lamé system with

the boundary conditions (1.3) and (1.4), including the variational discretisation such as

finite element methods [2], [3], [5], [9]. Due to Theorems 3.3 and 3.6, computations and

the related numerical analysis may be performed separately on the Helmholtz equation and

the Maxwell system.
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The rest of this paper is organised as follows. Auxiliary results needed for the analysis of

the methods are provided in Section 2. In Section 3, we present variational formulations for

the Lamé system (1.1) associated with the third (1.3) and fourth (1.4) boundary conditions

and derive the relevant decoupling results. Section 4 contains our concluding remarks.

2. Preliminaries

Let us start with L2-based Sobolev spaces. By (·, ·)G we denote the L2(G) scalar product

on an open bounded domain G ⊂ R and we write (·, ·) if G = Ω. The spaces H(curl;Ω) and

H(div;Ω) are defined by — cf. [1]:

H(curl;Ω) =
�

v ∈ L2(Ω) :∇∧ v ∈ L2(Ω)
	

,

H(div;Ω) =
�

v ∈ L2(Ω) :∇ · v ∈ L2(Ω)
	

,

and equipped with the norms

‖v‖H(curl;Ω) =
�

‖v‖2
L2(Ω)

+ ‖∇∧ v‖2
L2(Ω)

�1/2
,

‖v‖H(div;Ω) =
�

‖v‖2
L2(Ω)

+ ‖∇ · v‖2
L2(Ω)

�1/2
.

Let us also introduce the space

X := H(curl;Ω)∩H(div;Ω)

with the norm

‖v‖X =
�

‖v‖2
L2(Ω)

+ ‖∇∧ v‖2
L2(Ω)

+ ‖∇ · v‖2
L2(Ω)

�1/2
.

The main solution spaces considered in this work are the following subspaces of X :

X N := {v ∈ X ;ν∧ v = 0 on ∂Ω}, X T := {v ∈ X ; v · ν= 0 on ∂Ω}.
Lemma 2.1 (cf. Weber [11]). If Ω is a bounded connected Lipschitz domain, then the spaces

X N and X T are compactly embedded into L2(Ω).

Let Γ be the regular part of the boundary ∂Ω with the parametric representation

x (u) = (x1(u1,u2), x2(u1,u2), x3(u1,u2))
T , u = (u1,u2)

T ∈ R2, (2.1)

and let g = (g jk)
2
j,k=1

be the first fundamental matrix of differential geometry for Γ such

that

g jk :=
∂ x

∂ u j

· ∂ x

∂ uk

, j, k = 1,2.

Here and in what follows, we assume that the parameterisation (2.1) is chosen so that

ν= ν(x ) =
1
p|g|

∂ x

∂ u1

∧ ∂ x

∂ u2

, |g| := det(g),
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is the outward unit normal vector to ∂Ω on Γ . We denote by GradΓ the surface gradient

operator on Γ — cf. [4, 10]. If ϕ is a sufficiently smooth function defined in an open

neighborhood of Γ , then

GradΓϕ =

2∑

j,k=1

g jk ∂ ϕ

∂ u j

∂ x

∂ uk

,

where
�

g jk
�2

j,k=1
:=
��

g jk

�2

j,k=1

�−1
.

We also consider an operator S defined by

S (x ) = SΓ (x ) :=
1

2

3∑

l=1

�

GradΓνl

�

l
.

3. Weak Formulations and Decoupling

Let us present the main results of this paper. The application of the Helmholtz decom-

position to the source f ∈ L2(Ω) yields f = f p+ f s with ∇∧ f p = 0 and∇ · f s = 0. Hence,

the solution u of (1.1) can be formally written in the form

u = up + us,

where

up := − 1

k2
p

�

∇(∇ · u) + 1

λ+ 2µ
f p

�

,

us =
1

k2
s

�

∇∧ (∇∧ u)− 1

µ
f s

�

,

and kp := ω/
p

λ+ 2µ, ks := ω/
p
µ. The vector fields up and us are referred to as the

pressure (longitudinal) and shear (transversal) parts of u, respectively. It is easily seen

that

∇ · u =∇ · up, ∇∧ u =∇∧ us.

Now we are going to derive a decomposition of u by using suitable Helmholtz equation

and Maxwell system with appropriately chosen boundary conditions for ∇ · u and ∇ ∧ u,

respectively.

3.1. Boundary conditions (1.4)

In order to introduce the weak formulation, we recall a decoupling result for the elastic

scattering problem governed by the Lamé system (1.1) with the zero source. Note that the

corresponding proof does not involve the information concerning the right-hand side of

(1.1).



Decoupling Elastic Waves 245

Lemma 3.1 (cf. Liu & Xiao [8]). Let f ∈ L2(Ω) and u ∈ H2(Ω) be the solution of the

corresponding Eq. (1.1). If S (x ) = 0 on the connected part Γ of ∂Ω, then the boundary

condition (1.4) yields

∇ · u = 0 on Γ . (3.1)

Suppose that u ∈ H2(Ω) is the solution of the Eq. (1.1) with the boundary condi-

tion (1.4). Integrating by parts, for any v ∈ X N we get

(∇∧∇∧ u, v) = (∇∧ u,∇∧ v), (3.2)

−(∇(∇ · u), v) = (∇ · u,∇ · v)− 〈∇ · u, v ·ν〉∂Ω, (3.3)

where 〈·, ·〉∂Ω is the duality pairing between H1/2(∂Ω) and H−1/2(∂Ω) since the normal

trace space of H(div;Ω) is H−1/2(∂Ω)— cf. [9]. Assume now that ∂Ω= ∪m
j=1
Γ j andS (x ) =

0 on each connected component Γ j . The Eqs. (3.2), (3.3), (3.1) then yield

(−∆∗u, v) = (µ∇∧∇∧ u, v)− ((λ+ 2µ)∇(∇ · u), v)

= (µ∇∧ u,∇ ∧ v) + ((λ+ 2µ)∇ · u,∇ · v). (3.4)

It follows from (3.4) and (1.1) that the solution u satisfies the equation

(µ∇∧ u,∇∧ v) + ((λ+ 2µ)∇ · u,∇ · v)−ω2(u, v) = ( f , v) ∀v ∈ X N .

The variational formulation of the Lamé problem (1.1) with the boundary condition

(1.4) can be written as:

Provided that S (x ) = 0 on ∂Ω, find u = u([Ω, IV]) ∈ X N such that

a4(u, v) = ( f , v) ∀v ∈ X N , (3.5)

where a4(·, ·) is the bilinear form defined by

a4(v , w ) := (µ∇∧ v ,∇∧ w ) + ((λ+ 2µ)∇ · v ,∇ · w )−ω2(v , w ), v , w ∈ X N .

Theorem 3.1. If f ∈ L2(Ω), then for almost all ω > 0 the Eq. (3.5) has a unique solution

u ∈ X N such that

‖u‖X ≤ C‖ f ‖L2(Ω), (3.6)

where C is a constant independent of f .

Proof. For any w ∈ L2(Ω), we define an operator K N : L2(Ω)→ X N by

a4(K N w , v) + (1+ω2)(K N w , v) = (w , v) ∀v ∈ X N .

With respect to the graph norm, one can easily check that a4(·, ·)+(1+ω2)(·, ·) is a bounded

and coercive form on X N . By the Lax-Milgram lemma, the operator K N is well-defined and

the inequality

‖K N w‖X ≤ C1‖w‖L2(Ω)
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holds. Hence K N : L2(Ω)→ X N is a bounded linear operator and we can rewrite (3.5) as

the problem of finding of u ∈ X N such that

u − �ω2 + 1
�

K N u = K N f .

Lemma 2.1 implies that X N is compactly embedded into L2(Ω), so that K N : X N → X N

is compact. Since compact operators have at most countable number of eigenvalues, the

Eq. (3.5) has unique solution for almost allω> 0 and for suchω the estimate (3.6) follows.

Remark 3.1. From the perspective of variational problems, Theorem 3.1 means that (3.5)

itself is a well-posed forward problem without any additional geometric conditions S (x ) =
0 on ∂Ω.

The following theorem retrieves the boundary condition in (3.1) from the variational

formulation (3.5).

Theorem 3.2. If the solution u = u[Ω; IV ] of the problem (3.5) belongs to the space H2(Ω),

then it is also the solution of the problem (1.1) with the boundary conditions

ν∧ u = 0, ∇ · u = 0 on ∂Ω. (3.7)

Proof. To show that the solution to (3.5) is also a solution of (1.1), one can use inte-

gration by parts and (1.2). The first boundary condition in (3.7) follows directly from the

definition of X N . According to the trace theorem for Sobolev spaces [9], on any regular

component Γ of ∂Ω and for any φ ∈ C∞c (Γ ), there exists a v ∈ H1(Ω) such that

ν∧ v = 0 on ∂Ω, v · ν=
¨

φ on Γ ,

0 on the rest of ∂Ω.

It is clear that such a vector v belongs to X N . Substituting it into (3.5), integrating by parts

and noting (1.1), we obtain that

((λ+ 2µ)∇ · u,φ)Γ = 0 ∀φ ∈ C∞c (Γ ).

Since Γ is an arbitrary component, the second equation in (3.7) follows.

Remark 3.2. Imposing the condition S (x ) = 0 on ∂Ω and using two boundary conditions

in (3.7) along with the arguments in the proof of [8, Theorem 2.1], we arrive at the sec-

ond boundary condition in (1.4). This shows that (3.5) is equivalent to (1.1) and (1.4) if

S (x ) = 0 on ∂Ω.

The weak formulation (3.5) can be now used to establish the following decoupling

result.
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Theorem 3.3. If the solution u = u([Ω, IV]) of the problem (3.5) belongs to H3(Ω) and

f ∈ H1(Ω), then vp = vp([Ω, IV]) =: −∇ · u is the solution of the Helmholtz system

∆vp + k2
p
vp =

1

λ+ 2µ
∇ · f in Ω,

vp = 0 on ∂Ω,

(3.8)

and E s = E s([Ω, IV]) :=∇∧ u the solution of the Maxwell system

∇∧ (∇∧ E s)− k2
s Es =

1

µ
∇∧ f in Ω,

∇ · Es = 0 in Ω,

ν∧ (∇∧ Es) =
1

µ
ν∧ f on ∂Ω.

(3.9)

Proof. If φ ∈ C∞
c
(Ω), integration by parts yields

a4(u,∇φ) = ((λ+ 2µ)∇ · u,∇ ·∇φ)−ω2(u,∇φ)

= −((λ+ 2µ)∇(∇ · u),∇φ) +ω2(∇ · u,φ).

Moreover, we also have

( f ,∇φ) = −(∇ · f ,φ).

Therefore, using (3.5) and the second equation in (3.7), we arrive at the Helmholtz sys-

tem (3.8) with vp = −∇ ·u. To derive the system (3.9), we set v :=∇∧ F , F ∈ C∞c (Ω) and

substitute it in (3.5), so that

a4(u,∇ ∧ F) = (µ∇∧ u,∇∧∇∧ F)−ω2(u,∇ ∧ F)

= (µ∇∧∇∧ (∇∧ u), F)−ω2(∇∧ u, F),

and

( f ,∇∧ F) = (∇∧ f , F).

Thus the first and second equations in (3.9) are obtained with E s = ∇ ∧ u. To derive the

third boundary condition, we invoke Theorem 3.2. Since u is the solution of (1.1), then

µν∧∇∧ (∇∧ u)− (λ+ 2µ)ν∧∇(∇ · u)−ω2ν∧ u = ν∧ f on ∂Ω,

and taking into account the relations (3.7), we finish the proof.

Remark 3.3. During the proof of Theorem 3.3, we also derived the boundary condition

ν∧∇∧ (∇∧ u) =
1

µ
ν∧ f on ∂Ω.

This and the second boundary condition in (3.7) are deduced from (1.1) and (1.4) with

f = 0 under the assumption that S (x ) = 0 on ∂Ω in [8]. The decoupling (3.8) and (3.9) is

then established. Here we retrieve these results without any geometric condition — cf. also

the proof of Theorem 3.2. There is no conflict here, since the variational formulation (3.5)

is derived from (1.1) and (1.4) based on the geometric assumption. In other words, (3.5)

is independent of S (x ) due to the geometric assumption S (x ) = 0 on ∂Ω.
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3.2. Boundary Condition (1.3)

Let us now consider the Eq. (1.1) with the boundary condition (1.3). To proceed, we

need an auxiliary result.

Lemma 3.2 (cf. Liu & Xiao [8]). Let f ∈ L2(Ω) and u be the corresponding solution of (1.1).

If the connected component Γ of ∂Ω is flat, then the third kind boundary condition (1.3) yields

ν∧ (∇∧ u) = 0 on Γ . (3.10)

Suppose u ∈ H2(Ω) is the solution of (1.1) and (1.3). Using again integration by parts,

for any v ∈ X T we get

−(∆∗u, v) =(µ∇∧∇∧ u, v)− ((λ+ 2µ)∇(∇ · u), v)

=(µ∇∧ u,∇∧ v) + ((λ+ 2µ)∇ · u,∇ · v)
+ 〈µν∧ (∇∧ u), v〉∂ Ω.

If, in addition, Ω is a Lipschitz polyhedron, then employing (3.10), (1.1), we obtain that u

satisfies the equation

(µ∇∧ u,∇ ∧ v) + ((λ+ 2µ)∇ · u,∇ · v)−ω2(u, v) = ( f , v) ∀v ∈ X T .

Thus for Lipschitz polyhedrons Ω, the boundary value problem (1.1) with the third kind

boundary condition (1.3) can be formulated as follows:

Find u = u[Ω; I I I] ∈ X T such that

a3(u , v) = ( f , v) ∀v ∈ X T , (3.11)

where

a3(v , w ) := (µ∇∧ v ,∇∧ w ) + ((λ+ 2µ)∇ · v ,∇ · w )−ω2(v , w ), v , w ∈ X T .

Theorem 3.4. If f ∈ L2(Ω), then for almost all ω > 0 the Eq. (3.11) has a unique solution

u ∈ X T such that

‖u‖X ≤ C‖ f ‖L2(Ω), (3.12)

where C is a constant independent of f .

Proof. Similar to the proof of Theorem 3.1, we rewrite the Eq. (3.11) as

u − (ω2 + 1)K T u = K T f

with the operator K T : L2(Ω)→ X T defined by

a3(K T w , v) + (1+ω2)(K T w , v) = (w , v) ∀v ∈ X T .

By Lemma 2.1, X T is compactly embedded into L2(Ω). Therefore, the theory of compact

operators yields the well-posedness of the problem (3.11) and (3.12) — cf. the proof of

Theorem 3.1.



Decoupling Elastic Waves 249

Theorem 3.5. If the solution u = u[Ω; I I I] of the Eq. (3.11) belongs to H2(Ω), then it is

also the solution of the Eq. (1.1) with the boundary conditions

ν · u = 0, ν∧ (∇∧ u) = 0 on ∂Ω. (3.13)

Proof. Integration by parts shows that u satisfies the Eq. (1.1) and since u ∈ X T , it has

a vanishing normal trace on ∂Ω— i.e. it also satisfies the first condition in (3.13). For the

second condition in (3.13), we observe that for any tangential vector field φ ∈ (C∞c (Γ ))2
considered on regular piece Γ of ∂Ω, the Trace Theorem for Sobolev spaces provides the

existence of a vector v ∈ H1(Ω) such that

ν∧ v =

¨

φ on Γ ,

0 on the rest of ∂Ω,

v · ν= 0 on ∂Ω.

The vector v obviously belongs to X T . Substituting it into (3.11), integrating the result by

parts and using (1.1), we arrive at the equation

−(µν∧ (∇∧ u), v)∂Ω = (µν∧ (∇∧ u),ν∧φ)Γ = 0.

Since Γ is an arbitrary connected component of ∂Ω, the second boundary condition follows

and the proof is completed.

Remark 3.4. Theorem 3.4 means that (3.11) is a well-posed problem even without the

assumption that Ω is a Lipschitz polyhedron.

Remark 3.5. Similar to the case of boundary conditions of fourth type, we can show that

the assumption that Ω is a Lipschitz polyhedron guarantees that (3.13) implies the second

condition in (1.3). Therefore, the corresponding variational problem (3.11) and the Lamé

system (1.1) with (1.3) are equivalent.

Theorem 3.6. If f ∈ H1(Ω) and the solution u = u([Ω, III]) of (3.11) belongs to H3(Ω),

then

∆vp + k2
pvp =

1

λ+ 2µ
∇ · f in Ω,

∂νvp =
1

λ+ 2µ
ν · f on ∂Ω,

(3.14)

and

∇∧ (∇∧ E s )− k2
s
E s =

1

µ
∇∧ f in Ω,

∇ · Es = 0 in Ω,

ν∧ Es = 0 on ∂Ω,

(3.15)

where vp = vp([Ω, III]) =: −∇ · u and Es = Es([Ω, III]) :=∇∧ u.
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Proof. The proof is similar to that of Theorem 3.3. We start with the Maxwell sys-

tem (3.15). Let F ∈ C∞c (Ω). Substituting v = ∇ ∧ F in (3.11) and integrating the result

by parts yields

(µ∇∧∇∧ (∇∧ u), F)−ω2(∇∧ u, F) = (∇∧ f , F).

This and the second equation in (3.13) show that E s =∇∧u satisfies (3.15). Analogously,

using the vector v = ∇φ, φ ∈ C∞c (Ω) in (3.11), one obtains that vp = −∇ · u satisfies

the first equation in (3.14). To show that this vector also satisfy the boundary condition

in (3.14), we recall that u is a solution of the Lamé system (1.1) by Theorem 3.5. Choosing

an arbitrary φ ∈ H1(Ω), we multiply both sides of (1.1) by ∇φ. Then for any φ ∈ H1(Ω)

integration by parts and (1.2) yield

(−∆∗u −ω2u,∇φ) = (µ∇∧∇∧ u,∇φ)− ((λ+ 2µ)∇(∇ · u),∇φ)−ω2(u,∇φ)

=
︸︷︷︸

(3.13)

((λ+ 2µ)∆∇ · u,φ)− ((λ+ 2µ)∇(∇ · u) · ν,φ)∂ Ω +ω
2(∇ · u,φ),

( f ,∇φ) = −(∇ · f ,φ) + (ν · f ,φ)∂ Ω ∀φ ∈ H1(Ω),

and to finish the proof, one has to use (1.1) and the first equation in (3.14).

Remark 3.6. In the proof above, another boundary condition – viz.

∇ ·∇(∇ · u) = − 1

λ+ 2µ
∇ · f on ∂Ω (3.16)

is obtained. Along with the second condition in (3.13), condition (3.16) has been derived

in [8] for the homogeneous Lamé system coupled with (1.3) under the assumption that Ω

is a Lipschitz polyhedron. This ensures the validity of (3.14) and (3.15). These results are

recalled here since (3.11) is related to Lipschitz polyhedrons.

4. Concluding Remarks

We propose two weak formulations for the Lamé system with the boundary conditions

of third and fourth types. The regularity of the solutions and properties of the boundary

surface guaranty the equivalence of variational and standard formulations of the problem.

Moreover, if the boundaryΩ is a Lipschitz polyhedron or ifS (x ) = 0 on ∂Ω, the decoupling

results of [8] are derived from the weak formulations. The validity of these results without

of assumptions mentioned are subject to additional studies.
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