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Abstract. The convergence of a compact finite difference scheme for one- and two-

dimensional time fractional fourth order equations with the first Dirichlet boundary

conditions is studied. In one-dimensional case, a Hermite interpolating polynomial is

used to transform the boundary conditions into the homogeneous ones. The Stephenson

scheme is employed for the spatial derivatives discretisation. The approximate values of

the normal derivative are obtained as a by-product of the method. For periodic problems,

the stability of the method and its convergence with the accuracy O (τ2−α) + O (h4) are

established, with the similar error estimates for two-dimensional problems. The results

of numerical experiments are consistent with the theoretical findings.
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1. Introduction

Let C
0

Dαt v, 0 < α < 1 be the Caputo fractional derivative of a function v(x , t) [30]

defined by

C
0

Dα
t

v(x , t) :=
1

Γ (1−α)

∫ t

0

(t −τ)−α ∂ v

∂ τ
(x ,τ)dτ. (1.1)

We consider the one-dimensional time fractional fourth-order equation

C
0 Dαt v(x , t) +

∂ 4v

∂ x4
(x , t) = g(x , t), x ∈ (xL, xR), t ∈ (0, T ] (1.2)

with the initial and boundary conditions
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v(x , 0) = v0(x), x ∈ [xL, xR]

v(xL, t) = φL(t),
∂ v

∂ x
(xL, t) =ψL(t),

v(xR, t) = φR(t),
∂ v

∂ x
(xR, t) =ψR(t).

(1.3)

Considering the above problem in the situation where the time variable t does not appear,

we obtain the biharmonic equation, which finds applications in incompressible fluid dy-

namics and in two-dimensional elasticity theory [2]. Numerical schemes for such problems

are developed and well studied. Thus, for multi-space nonlinear parabolic partial differen-

tial equations and vibration problems, implicit difference schemes of order two in time and

order four in space are, respectively, presented in [27] and [28]. It was already noted that

for fourth-order diffusion equation with the second Dirichlet boundary conditions — i.e. if

a second order derivative appears in the boundary conditions, the finding of numerical so-

lutions is relatively easy. Thus writing the second order derivative as an auxiliary variable,

one can split the original problem into a coupled system of two second-order equations

with appropriate boundary conditions. However, the discretisation of the first Dirichlet

boundary conditions requires special attention in order to match the global accuracy. As

an uncoupled scheme, the Stephenson schemes of second and fourth order have been pre-

sented in [34], fourth order accurate schemes in [4] and [12], and a compact discretisation

of the biharmonic problem with a fast FFT algorithm in [3].

Traditional partial differential equations contains the derivatives of integer order only.

Recently, fractional differential equations attracted substantial attention because of wide

applications — cf. [26,29,30]. Thus for anomalous subdiffusion equations, finite difference

schemes are considered in Refs. [5,25,41,45]. Moreover, a difference scheme with spectral

method [24] and fast finite difference methods [6, 37] are applied to space-fractional dif-

fusion equations, to tempered fractional diffusion equations [17], to time fractional equa-

tions [22, 39] and to multi-term time-fractional diffusion equations [31]. Compact finite

difference schemes for subdiffusion equations are proposed and studied in [1,8,14], where

the error estimates O (τ + h4), O (τ2−α + h4), O (τ2 + h4) are, respectively, obtained. For

one-dimensional space and time fractional Bloch-Torrey equation, the stability and conver-

gence of a high-order difference scheme have been studied in [44] by the discrete energy

method. Various high-order difference schemes for Stokes’ first problem are considered for

heated generalized second grade fluid with fractional derivatives [21] and for distributed-

order time-fractional equations [11]. Galerkin and spectral element methods for fractional

equations have been investigated in [23,32,40].

The numerical solutions of fractional equations of fourth-order have been also con-

sidered — e.g. a compact algorithm for sub-diffusion equations with the first Dirichlet

conditions [20]. A new variable was introduced and a high order difference scheme was

developed with the convergence order O (τ2−α+h4) in L2-norm. In addition, a local discon-

tinuous Galerkin method for time-fractional fourth-order differential equations was stud-

ied in [16,38], an implicit compact finite difference scheme for the fourth-order fractional

diffusion-wave system in [19], and the hyperbolic equation describing the random vibra-


