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Abstract. A Crank-Nicolson finite volume scheme for the modeling of the Riesz space

distributed-order diffusion equation is proposed. The corresponding linear system has a

symmetric positive definite Toeplitz matrix. It can be efficiently stored in O (NK) mem-

ory. Moreover, for the finite volume scheme, a fast version of conjugate gradient (FCG)

method is developed. Compared with the Gaussian elimination method, the computa-

tional complexity is reduced from O (MN3 + NK) to O (lAMN log N + NK), where lA is

the average number of iterations at a time level. Further reduction of the computational

cost is achieved due to use of a circulant preconditioner. The preconditioned fast finite

volume method is combined with the Levenberg-Marquardt method to identify the free

parameters of a distribution function. Numerical experiments show the efficiency of the

method.
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1. Introduction

In the past few decades, fractional partial differential equations (PDEs) have been

widely used to model complex physical phenomena with long-range time memory and

spatial interactions [3, 7, 27, 29, 36]. Systematic introduction to fractional calculus and

fractional differential equations can be found in Refs. [33,35].
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Unlike the PDEs of integer-order, analytical solutions of fractional PDEs are rarely avail-

able, so that numerical methods have to be employed — cf. Refs. [8,9,13,17,18,24–26,30,

31, 39, 44, 46]. However, the nonlocal nature of fractional differential operators leads to

dense stiffness matrices and/or long tails in the time direction. Thus, traditional approxi-

mation methods using numerical discretisation, have a high computational cost, especially

in multidimensional situations. In 2010, Wang et al. [41] proposed a direct fast finite

difference method for space-fractional diffusion equations, which retained the same accu-

racy as regular finite difference methods but required only O (N ) memory storage with the

computational cost O (N log2 N ). After that, fast solution methods have been extended to

various fractional PDEs, including space-fractional PDEs [19,21,34,42,43], time-fractional

PDEs [20,45] and space-time-fractional PDEs [10,11,15].

Recently, Li et al. [23] considered a finite volume method for a distributed-order space-

fractional model and proved the unconditional stability, convergence and the second order

accuracy of the method, both in space and time. Here, we want to develop a precondi-

tioned fast finite volume method for a distributed-order space-fractional model and apply

it to an inverse problem to determine the free parameters of the corresponding distribution

function. Starting with the investigation of the matrix structure of the method and its ef-

ficient storage, we then develop a preconditioned fast conjugate gradient (PFCG) method

based on a circulant preconditioner and fast matrix-vector multiplication. Numerical ex-

periments show a largely reduced CPU usage, hence the method is well suited to large-

scale modeling and simulation. Let us recall that various application problems require the

identification of free parameters in the corresponding mathematical models — e.g. given

experimental data, determine a parameter by minimising the difference between the nu-

merical output and experimental data. Such procedures are usually considered as inverse

problems [6,12], and in this work we develop a PFCG-based optimisation algorithm, which

is based on the Levenberg-Marquardt iterative method with the Armijo rule. It is numeri-

cally tested, including the situations when the observation data contaminated by random

noise. The numerical tests show the efficiency and accuracy of the method proposed.

The rest of the paper is organised as follows. In Section 2, we consider the Riesz space

distributed-order diffusion equation and describe the corresponding finite volume approx-

imations. Section 3 discusses the structure of the finite volume scheme matrix and its

efficient storage. In Section 4, we develop a PFCG iterative method for the finite volume

scheme and test its efficiency. Section 5 is devoted to the identification of free parameters

for a distributed-order diffusion equation with the distribution function (2.2). We note

that numerical experiments show the strong performance of the method. Our concluding

remarks are in Section 6.

2. A Diffusion Equation and Finite Volume Approximations

In this paper, we develop a preconditioned fast finite volume method for the Riesz space

distributed-order diffusion equation


