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Abstract. A collocation method based on exponential B-splines for two-dimensional

second-order non-linear hyperbolic equations is studied. The initial equation is split

into a system of coupled equations, each of which is transformed into a system of or-

dinary differential equations. The corresponding differential equations are solved by

SSP-RK(2,2) method. It is shown that the method under consideration is uncondition-

ally stable. Numerical experiments demonstrate its efficiency and accuracy.
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1. Introduction

We consider the second order two-dimensional non-linear hyperbolic equation

ut t = ux x + uy y − 2αut − β
2u+ g(x , y, t) + f (u), a < x < b, c < y < d , t > 0 (1.1)

with the initial conditions

u(x , y, 0) = φ(x , y), ut(x , y, 0) =ψ(x , y), a ≤ x ≤ b, c ≤ y ≤ d (1.2)

and the Dirichlet boundary conditions

u(a, y, t) = f1(y, t), u(b, y, t) = f2(y, t), c < y < d , t > 0,

u(x , c, t) = f3(x , t), u(x , d , t) = f4(x , t), a < x < b, t > 0.
(1.3)
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If α > 0 and β > 0, the Eq. (1.1) becomes the telegraph equation and it is damped wave

equation if α > 0 and β = 0.

This equation is used in diffusion processes [10], image processing [28], vapor phase

chromatography [9], dispersal in biological systems [1], and stochastic processes [18,19].

A considerable attention has been paid to the solution of one-, two- and three-dimensional

second order hyperbolic equations. In particular, Mohanty et al. [15–17] developed uncon-

ditionally stable implicit three level methods for one-dimensional second order hyperbolic

problems and unconditionally stable implicit alternating direction methods for two- and

three- dimensional hyperbolic problems. For two-dimensional linear telegraph equations,

Bülbül et al. [4] and Jiwari et al. [12] developed Taylor matrix based methods and a differ-

ential quadrature method, respectively. Considering two-dimensional second-order hyper-

bolic equations, Ding and Zhang [7] proposed a fourth-order compact difference scheme,

Dehghan and Ghesmati [5] studied meshless local weak and strong form methods and De-

hghan and Mohebbi [6] considered a collocation method. In addition, Rashidinia et al. [20]

and Mittal et al. [14] used cubic B-splines in one- and two-dimensional equations, respec-

tively.

Here, we deal with an approximation method based on exponential B-splines. It was

shown by McCartin [13] that exponential splines have a number of advantages — i.e. in

computational aerodynamics they do not produce false oscillations of interpolants that ap-

pear in cubic splines methods. Nevertheless, exponential splines are rarely used in approx-

imate solution of partial differential equations. Thus Ersoy and Idris [8] provided an expo-

nential B-spline based algorithm for the Korteweg-de Vries equation, Singh et al. [21] used

exponential B-splines in collocation method for one dimensional second order hyperbolic

equation. Note that these splines have been introduced by Späth [23], who also consid-

ered their two-dimensional generalisation [24]. In this work an exponential B-spline based

collocation method is applied to the second order two-dimensional non-linear hyperbolic

equation (1.1). Decomposing the Eq. (1.1) into two equations, we discretise them in spa-

tial directions and convert into the systems of ordinary differential equations. The systems

obtained, are solved by SSP-RK(2,2) method — cf. Ref. [25].

The paper is organised as follows. In Section 2, we discuss a two-dimensional expo-

nential B-spline based collocation method, with more details being provided in Section 3.

Section 4 is concerned with the stability analysis. Five numerical examples are considered

in Section 5 and our concluding remarks are in Section 6.

2. Two-Dimensional Exponential B-Spline Collocation Method

We consider the partitions

a = x0 < x1 < · · ·< xN−1 < xN = b, (2.1)

c = y0 < y1 < · · ·< yM−1 < yM = d (2.2)

of the domain Ω = {(x , y) : a ≤ x ≤ b, c ≤ y ≤ d}, where hx = x l − x l−1 = (b − a)/N ,

l = 1,2, · · · , N and hy = ym − ym−1 = (d − c)/M , m = 1,2, · · · , M . Moreover, we use


