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Abstract. A numerical method for the generalised second grade fluid through porous

media with anomalous diffusion is considered. The method is based on a combination

of finite differences in time and a spectral method in space directions. The convergence

of the method is rigorously proved and theoretical error estimates are established. The

numerical scheme is unconditionally stable and provides a high accuracy if the solution

is smooth enough. The results of numerical simulations are consistent with theoretical

findings.

AMS subject classifications: 76A10, 35R11, 65L12, 76M22, 65L20

Key words: Time fractional fluid equation, finite difference, spectral method, stability, convergence.

1. Introduction

Non-Newtonian fluids find numerous applications in material processing, chemical and

nuclear industries, geophysics, oil reservoir engineering and bio-engineering [17]. Blood,

ketchup, shampoo, paint, polymer melts, drilling mud, various oils and greases are common

examples of non-Newtonian fluids [16, 47]. A variety of fluids and industrial applications

provide a major motivation for research in this field. An important class of non-Newtonian

flows is represented by viscoelastic fluids, which includes second order fluids among others.

Investigating the viscosity of gases, Clerk Maxwell proposed the following fluid stress

equation

(stress) +τ
d(stress)

d t
= (viscosity)×

d(strain)

d t
, (1.1)

where τ is the relaxation time — cf. [31]. If straining motion is long compared to τ, the

second term in the left-hand side of (1.1) can be dropped and the stress is proportional

to the strain rate, which gives rise to the viscous behavior. On the other hand, for short

∗Corresponding author. Email addresses: lym�xmu.edu.n (Y. Lin)

http://www.global-sci.org/eajam 809 c©2018 Global-Science Press



810 M. T. Hasan and Y. Lin

time strain scale (relative to τ), the first term in the left-hand side of (1.1) can be re-

moved, so that stress is proportional to the strain itself displaying elastic behavior. Note

that phenomenological viscoelastic models are based on springs and dashpots. Springs

obey Hooke’s law whereas dashpots Trouton’s (or Newton’s) law and their combinations

lead to various viscoelastic models such as Maxwell or Zener ones [7]. Modern constitutive

equations for viscoelastic fluids are usually expressed in a covariant tensorial form follow-

ing the principles of Oldroyd [5]. For the second order fluids, the Rivlin-Ericksen theory

of differential type becomes popular among experimenters and theorists. In this model

the stress response of a deforming fluid body is characterised by stretching and kinematic

tensors — cf. Ref. [10].

Models based on ordinary differential equations have a relatively restricted class of so-

lutions, which does not provide an adequate description of the complex systems in general.

This problem can be overcome by using fractional equations. In particular, if a spring rep-

resents a zero order element and a dashpot a first order element, then a new component,

called spring-pot, can be considered as the one of order β ∈ [0,1]. The parameter β can

provide connection between pure elastic and viscous behaviors. Replacing the dashpot

with a spring-pot, a modified fractional order viscoelastic model can be developed [28].

The current models of viscoelasticity involving fractional calculus are based on the formal

replacement of the first-order derivatives in ordinary rheological constitutive equations by

fractional derivatives of a non-integer order β ∈ (0,1) [38]. However, this procedure does

not always guarantee the resulting expression to be physically reasonable [14]. We note

that rheological constitutive equations with fractional derivatives are actively used in the

description of polymers and melts [12]. In some cases, the corresponding fractional equa-

tions are linked to molecular theories [2]. Besides, modified viscoelastic models properly

describe the behavior of xanthan gum, sesbania gels and blood flows [44].

The study of fluid flows through porous media also attracted a lot of attention due to

various industrial applications, including irrigation, food processing, soap and cellulose so-

lutions, blood motion and crude oil recovery from reservoir rocks [20, 30, 32, 39]. On the

other side, anomalous diffusion is present in surface growth, transport fluids in porous me-

dia [45], two-dimensional rotating flows [43], diffusion at liquid surfaces [6], plasma [8],

subrecoil laser cooling [3], continuous time random walks [19, 29], non-Markovian dy-

namical processes in protein folding [33]. Anomalous diffusion deviates from the standard

Fichean description of Brownian motion, where the squared mean displacement exhibits a

nonlinear growth with respect to time — i.e. < x2 >∼ tα. The parameter α belongs to the

interval (0,1) in the case of anomalous sub-diffusion and is greater than 1 for anomalous

super-diffusion. The later may occur in chaotic or turbulent processes through enhanced

transport of particles [18].

The goal of this paper is to study generalised second grade fluids with anomalous dif-

fusion equation in porous media and to develop efficient numerical methods for its solu-

tion. The presence of fractional derivatives makes this task more complicated, since their

point values depend on the global behaviour of the corresponding functions. Let us recall

attempts for the generalised second grade fluid with Darcy’s effect based on Wright func-

tion and Fox H-function [11, 48, 49]. Besides, Sohail et al. [42] considered spectral time


