Convergence of Parareal Algorithms for PDEs with Fractional Laplacian and a Non-Constant Coefficient

Chengming Huang^{1,2} and Shu-Lin Wu^{3,*}

¹School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.

²Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China. ³School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 430074, China.

Received 22 April 2018; Accepted (in revised version) 21 July 2018.

Abstract. The convergence of Parareal-Euler and -LIIIC2 algorithms using the backward Euler method as a \mathscr{G} -propagator for the linear problem $\mathbf{U}'(t) + \alpha(t)\mathbf{A}^{\eta}\mathbf{U}(t) = \mathbf{f}(t)$ with a non-constant coefficient α is studied. We propose to employ the propagator *G* to a constant model $\mathbf{U}'(t) + \beta \mathbf{A}^{\eta}\mathbf{U}(t) = \mathbf{f}(t)$ with a special coefficient β instead of applying both propagators \mathscr{G} and \mathscr{F} to the same target model. We established a simple formula to find an optimal parameter β_{opt} , minimising the convergence factor for all mesh ratios. Numerical results confirm the proximity of theoretical optimal β_{opt} to the optimal numerical parameter.

AMS subject classifications: 65M10, 78A48

Key words: Parareal method, time-varying problem, convergence analysis, parameter optimisation.

1. Introduction

A parareal method is an iterative algorithm characterised by two propagators \mathscr{G} and \mathscr{F} , respectively, associated with large ΔT and small Δt step sizes, such that $\Delta T = J \Delta t$ and $J \ge 2$ is an integer. The \mathscr{G} -propagator is defined by a cheap, stable, low order time-integrator, such as backward Euler method, while the \mathscr{F} -propagator is defined by an expensive high order time-integrator. The algorithm proposed by Lions *et al.* [21] is widely used in Hamiltonian systems [1, 3, 8], parabolic equations [6, 24], first and second order hyperbolic equations [4, 7], PDE-constrained control and optimisation [5, 22, 23], singularly perturbed ODEs and PDEs [12, 18], Volterra integral equations [20, 38], time-periodic problems [9, 32], simulations of plasma turbulence [28, 29] and fractional PDEs [34, 37].

^{*}Corresponding author. *Email addresses:* chengming_huang@hotmail.com (Chengming Huang), wushulin84@hotmail.com (Shu-Lin Wu)

The algorithm converges rapidly and robustly with respect to the change of mesh ratio J and discretisation parameters Δt and Δx . Therefore, it is possible to describe the solution at later stages without accurate information about earlier times, while the global accuracy of the method using only a few iterations is comparable to higher order expensive \mathscr{F} -propagators with fine time step sizes. In this work we use the backward Euler method as a \mathscr{G} -propagator in parareal algorithms for the following problem:

$$\frac{\partial u(\mathbf{x},t)}{\partial t} = \alpha(t)(-\Delta)^{\eta}u(\mathbf{x},t) + f(\mathbf{x},t), \quad (\mathbf{x},t) \in \Omega \times (0,T), \tag{1.1}$$

where $\alpha(t) > 0, \eta \in (0, 1)$ and $\Omega \subset \mathbb{R}^d$ with d = 1, 2, 3. Moreover, the spatial fractional Laplacian operator $(-\Delta)^{\alpha}$ is defined via an eigenfunction expansion on a finite-size spatial domain similar to [2, 14, 15, 26, 31, 39, 41]. It is worth noting that the definition of this operator based on Fourier transform [17, 30] is less convenient from numerical point of view, although in both cases the matrix transform method provides an efficient spatial discretisation [14, 25, 39, 40]. This discretisation of the fractional Laplacian $(-\Delta)^{\alpha}$ consists in establishing the matrix representation **A** for the approximation of the negative Laplacian $-\Delta$, which is then raised to the same fractional power α , thus obtaining $(-\Delta)^{\alpha} \approx \mathbf{A}^{\alpha}$. In this way, the matrix-vector product $A^{\alpha}b$ can be approximated by various numerical methods, including contour integrals [2], Lanczos method [31,39] and others — cf. Refs. [16,19,27].

Consider a mesh with *m* nodes and let $u_j(t)$ denote the value of a function $u(\mathbf{x}, t)$ at *j*-th node \mathbf{x}_j . To find the approximate solution $\mathbf{U}(t)$ of (1.1), we apply the matrix transform method to the Eq. (1.1) and arrive at the system of ODEs

$$\mathbf{U}'(t) + \alpha(t)\mathbf{A}^{\eta}\mathbf{U}(t) = \mathbf{f}(t), \qquad (1.2)$$

with a diagonalisable matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ such that $\sigma(\mathbf{A}) \subset [0, +\infty)$. The convergence of the parareal algorithm for the problem (1.1) with constant coefficient α is well studied. In particular, if \mathscr{G} is the backward Euler method and \mathscr{F} the exact-numerical-propagator — i.e. if $\mathscr{F} = e^{-\alpha \mathbf{A}^{\eta} \Delta t}$, then according to Fig. 1, the convergence factor $\rho := \max_{z \in \sigma(\Delta T \alpha \mathbf{A}^{\eta})} \mathscr{K}(z, J)$ satisfies the relation

$$\rho \approx \frac{1}{3} \quad \text{for all} \quad J \ge 2,$$
(1.3)

where $\sigma(\Delta T \alpha \mathbf{A}^{\eta})$ is the spectrum of $\Delta T \alpha \mathbf{A}^{\eta}$ and the term $\mathcal{K}(z, J)$, called the contraction factor of the parareal algorithm, is defined by

$$\mathscr{K}(z,J) = \frac{\left| \left(e^{-z/J} \right)^J - 1/(1+z) \right|}{1 - |1/(1+z)|} = \frac{\left| e^{-z} - 1/(1+z) \right|}{1 - |1/(1+z)|}$$

The term 1/(1+z) is the stability function for backward Euler's method. We note however that in practical computations, the function $e^{-\alpha A^{\eta} \Delta t}$ is not the best choice for \mathscr{F} -propagator, since it requires a special treatment [13]. If one uses a Runge-Kutta method as an \mathscr{F} -propagator, the contraction factor \mathscr{K} has the form

$$\mathscr{K}(z,J) = \frac{\left|\mathscr{R}_{f}^{J}(z/J) - \mathscr{R}_{g}(z)\right|}{1 - \left|\mathscr{R}_{g}(z)\right|},$$