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Abstract. It is well known that numerical derivative contains two types of errors. One is

truncation error and the other is rounding error. By evaluating variables with rounding

error, together with step size and the unknown coefficient of the truncation error, the

total error can be determined. We also know that the step size affects the truncation

error very much, especially when the step size is large. On the other hand, rounding

error will dominate numerical error when the step size is too small. Thus, to choose a

suitable step size is an important task in computing the numerical differentiation. If we

want to reach an accuracy result of the numerical difference, we had better estimate the

best step size. We can use Taylor Expression to analyze the order of truncation error,

which is usually expressed by the big O notation, that is, E(h) = Chk. Since the leading

coefficient C contains the factor f (k)(ξ) for high order k and unknown ξ, the truncation

error is often estimated by a roughly upper bound. If we try to estimate the high order

difference f (k)(ξ), this term usually contains larger error. Hence, the uncertainty of ξ

and the rounding errors hinder a possible accurate numerical derivative.

We will introduce the statistical process into the traditional numerical difference. The

new method estimates truncation error and rounding error at the same time for a given

step size. When we estimate these two types of error successfully, we can reach much

better modified results. We also propose a genetic approach to reach a confident numer-

ical derivative.
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1. Introduction

In numerical computation, the total numerical error comes from two types of errors.

The first one is rounding error due to the limitation of hardware so as not to represent the

real number. The second one is truncation error as a result of the approximation ability of

specific numerical method. It is important to control errors of numerical computation for

many applications. To get the best numerical derivative, we must select the best step size
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to balance rounding error and truncation error. However, there are some unknown factors

in truncation error analysis, so that we could not decide the best step size.

We first give some definitions that will be used in this paper.

Definition 1.1. Let f ∈ C∞(R), the k-th order numerical derivative of function f at x0

that is computed by the step size h is denoted by D(k)( f , x0,h).

For example, D(1)( f , x ,h) = ( f (x + h)− f (x))/h is the forward difference to approx-

imate f ′(x) and D(2)( f , x ,h) = ( f (x + h)− 2 f (x) + f (x − h))/h2 is the central difference

to approximate f ′′(x). Because there are three types of approximation methods (forward,

backward and central) and every approximation method has its specific truncation error,

we use the notation D
(k)
F,n( f , x ,h) to indicate the numerical derivative is forward method

with n-th order truncation error. Similarly, D
(k)

C ,n
( f , x ,h) indicates the central method with

n-th order truncation error and D
(k)
B,n( f , x ,h) indicates the backward method with n-th order

truncation error.

To know the error of approximation ( f (x + h)− f (x))/h ≈ f ′(x), we use Taylor ex-

pression

f (x + h) = f (x) + f ′(x)h+
f ′′(ξ)

2
h2, (1.1)

where ξ ∈ (x , x + h). Hence, we have D
(1)

F,1
( f , x ,h)− f ′(x) = f ′′(ξ)h/2 = O(h). The error

term f ′′(ξ)h/2 contains two unknowns. One is the function f ′′(x) and the other is ξ. We

call this term f ′′(ξ)h/2 is the truncation error. To analyse the truncation error, we have

|D(1)
F,1
( f , x ,h)− f ′(x)| ≤ Kh, where K =maxξ∈(x ,x+h) | f

′′(ξ)/2|. In practice, we will assume

that h is small and f ′′(x) is a continuous function, then the value of f ′′(x) is closed to

f ′′(ξ). To see the error of central difference to approximate f ′′(x), we express f (x + h)

and f (x − h) by

f (x + h) = f (x) + f ′(x)h+
f ′′(x)

2
h2 +

f (3)(x)

6
h3 +

f (4)(ξ1)

24
h4 (1.2)

and

f (x − h) = f (x)− f ′(x)h+
f ′′(x)

2
h2 −

f (3)(x)

6
h3 +

f (4)(ξ2)

24
h4, (1.3)

where ξ1 ∈ (x , x + h) and ξ2 ∈ (x − h, x). We have

f (x + h)− 2 f (x) + f (x − h)

h2
= f ′′(x) +

f (4)(ξ)

12
h2, (1.4)

for some ξ ∈ (x −h, x +h). Thus, we use D
(2)

C ,2
( f , x ,h) to denote ( f (x +h)−2 f (x)+ f (x −

h))/h2.

The total error of D
(1)

F,1
( f , x ,h) is also related to the rounding error. We assume that

the machine epsilon is ε. Evaluate f (x + h) and f (x) will include the rounding errors,

so-called e1 and e2, and the rounding error will be proportional to the value of f . That is


