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Abstract. Incompressible flows with zero Reynolds number can be modeled by the
Stokes equations. When numerically solving the Stokes flow in stream-vorticity formu-

lation with high-order accuracy, it will be important to solve both the stream function

and velocity components with the high-order accuracy simultaneously. In this work, we
will develop a fifth-order spectral/combined compact difference (CCD) method for the

Stokes equation in stream-vorticity formulation on the polar geometries, including a unit
disk and an annular domain. We first use the truncated Fourier series to derive a coupled

system of singular ordinary differential equations for the Fourier coefficients, then use

a shifted grid to handle the coordinate singularity without pole condition. More impor-
tantly, a three-point CCD scheme is developed to solve the obtained system of differen-

tial equations. Numerical results are presented to show that the proposed spectral/CCD

method can obtain all physical quantities in the Stokes flow, including the stream func-
tion and vorticity function as well as all velocity components, with fifth-order accuracy,

which is much more accurate and efficient than low-order methods in the literature.
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1. Introduction

The two-dimensional (2D) Stokes equations in the usual velocity-pressure formulation

are given as follows,
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−∆u+
∂ p

∂ x
= f1, in Ω, (1.1)

−∆v +
∂ p

∂ y
= f2, in Ω, (1.2)

∂ u

∂ x
+
∂ v

∂ y
= 0, in Ω, (1.3)

with boundary conditions

u = u1(x , y), v = v1(x , y), on Γ = ∂Ω, (1.4)

where ∆ = ∂ 2

∂ x2 +
∂ 2

∂ y2 is the well-known Laplacian operator, (u, v) is the velocity field, p is

the pressure, ( f1, f2) is the external force, Ω is the 2D domain, and Γ is its boundary.

A flow governed by the Stokes equations is known as a creeping flow or Stokes flow.

Such flow is used for the fluid with very low Reynolds number, that is the inertia is very small

compared to the viscous force. When the inertial term is neglected, i.e., Reynolds number

is zero, 2D Navier-Stokes equations reduce to Stokes equations (1.1)-(1.3). We refer [26]

for a brief introduction to the life at low Reynolds number, and refer [13] for discussions

on various methods for solving the viscous incompressible flow at low Reynolds numbers.

The above 2D Stokes problem (1.1)-(1.4) in rectangular domain was numerically studied

in [12] by a fourth-order compact MAC finite difference scheme. However, in many physical

problems, one often needs to solve flow equations in a non-Cartesian domain, such as polar

or cylindrical domains. For example, Navier-Stokes equations in the polar or cylindrical

domains are discussed in [2, 10, 16, 19, 20, 24, 28, 29, 34, 36, 37]. This paper will focus on

the 2D Stokes equations on polar geometries, including a unit disk and an annulus domain.

Now we first introduce the stream function ψ [27,35], which satisfies

u= −
∂ψ

∂ y
, v =

∂ψ

∂ x
. (1.5)

Through a simple calculation, it is easy to show that the above Stokes equations (1.1)-(1.3)

is equivalent to the following boundary value problem of biharmonic equation for ψ,

∆
2ψ= f (x , y), in Ω, (1.6)

where

f =
∂ f1

∂ y
−
∂ f2

∂ x
,

and the boundary conditions (1.4) can be transformed as

ψ= g(x , y),
∂ψ

∂ ~n
= h(x , y), on Γ = ∂Ω, (1.7)

where

h(x , y) = v1n1 − u1n2, g(x , y) =

∫

Γ

−u1d y + v1d x + g(x0, y0).


