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Abstract. The sparse reconstruction of functions via a transformed ℓ1 (TL1) minimi-

sation is studied and theoretical results concerning recoverability and accuracy of such

reconstruction from undersampled measurements are obtained. To identify the coef-

ficients of sparse orthogonal polynomial expansions in uncertainty quantification, the

method is combined with the stochastic collocation approach. The DCA-TL1 algorithm

[37] is used in implementing the TL1 minimisation. Various numerical examples demon-

strate the recoverability and efficiency of this method.
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1. Introduction

This paper is concerned with the sparse approximation of target functions f : Rd →
R, d ≥ 1, given relatively scarce training data in the frame of the generalized polyno-

mial chaos (gPC) approach [29]. The problem occurs in uncertainty quantification with

large-scaled stochastic systems, so that only limited simulations have been carried out and

the number of training samples is much lower than the cardinality of the gPC basis. This

leads to underdetermined systems with infinite number of solutions. Rooted in the idea of

compressive sensing [4,6,8,9], stochastic collocation methods via ℓ1-minimisation proved

their efficiency in recovering sparse approximations of target functions. For more details

the reader can refer to [10,14–17,19,23,30–32] and references therein.

Although ℓ1-minimisation has attracted considerable attentions in compressive sensing,

it may not perform well on some practical problems — e.g. if the measurement matrix is
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coherent, and is not able to derive the sparsest solutions. To enhance the sparsity of the so-

lutions, various nonconvex penalties have been developed. Their metric is comparable with

ℓ1-norm but stands closer, in a sense, to ℓ0-norm, with ℓp-penalties, p ∈ (0,1) among the

most popular. The recoverability of ℓp-minimisation with p ∈ (0,1) is established in [27].

A stochastic collocation method via ℓp-minimisation to recover sparse gPC coefficients was

investigated in [13]. A nonconvex ℓ1−2-penalty developed in [18, 34], utilises the differ-

ence of convex algorithm (DCA) [25,26] to obtain a sparse solution. It is worth noting that

numerical experiments show the better sparsity of ℓ1−2 than ℓ1. This ℓ1−2-minimisation

was combined with stochastic collocation for sparse gPC approximation in [33].

Here, we focus on a nonconvex transformed ℓ1-penalty studied recently by Zhang and

Xin [37]. They showed that the TL1 penalty interpolates ℓ0 and ℓ1 norms through a non-

negative parameter a ∈ (0,+∞), satisfies unbiasedness, sparsity, Lipschitz continuity and

developed the DCA for the TL1-minimisation problem. Moreover, they compared DCA-

TL1 with with DCA for other non-convex penalties, including PiE [22], MCP [35] and

SCAD [11]. It turns out that DCA-TL1 performs competitively well. Using all these results,

we implement TL1 minimisation for the stochastic collocation.

The goal of this work is twofold. First, we use [3, 37] to obtain new theoretical re-

sults describing recoverability and accuracy of the TL1 minimisation reconstruction al-

though, similarly to [33], our estimates do not demonstrate the superiority of TL1 over

ℓ1-penalty. Second, we use the stochastic collocation method via TL1 minimisation to iden-

tify the gPC expansion coefficients. In particular, we focus on Legendre polynomials in

multi-dimensional case. In order to implement the constrained minimisation problem with

TL1 penalty, we employ the DCA-TL1 algorithm for sparse polynomial representations in-

troduced in [37]. In order to derive the sparsest solution in the case of non-sparse functions,

we develop an adaptive approach. The algorithm, called the adaptive DCA-TL1 method,

allows us to choose the parameter a in different ways. Thus, for a fixed ai from a set a,

we use the TL1 minimisation algorithm to generate the minimiser. If the minimiser, ob-

tained by setting a j ∈ a and a j 6= ai is more sparse than the previous one, we select the

parameter a j and the corresponding solution. Proceeding in this way, we will get the best

parameter and the sparsest solution. Various numerical experiments demonstrate that the

TL1 minimisation method is the more efficient than ℓ1 and ℓ1−2 minimisations.

The rest of the paper is organised as follows. In Section 2, we introduce TL1 minimi-

sation for stochastic collocation which is the main object of study in this paper. Section 3

is devoted to theoretical estimates in sparse and non-sparse recovery of the signals which

may contain noise. The recovery via the stochastic collocation method using TL1 minimi-

sation is discussed in Section 4. Here, we also introduce a DCA-TL1 algorithm and present

its pseudo-code. The results of numerical experiments are shown in Section 5 and our

concluding remarks are in Section 6.

2. gPC Expansion and Problem Setup

When a simulation model is computationally expensive to run, the approximation of

the model output is often an efficient method to quantify the parametric uncertainty. The


