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Abstract. The alternating direction method of multipliers is applied to three-block sep-

arable quadratic programming problems whose objective function is the sum of three

functions without coupled variables. Necessary and sufficient conditions for the unique

solvability of this problem are established. The convergence of the method is considered

from the viewpoints of matrix computation and numerical optimisation.
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1. Introduction

We consider the three-block separable quadratic programming problem with a linear

constraint
min
x ,y,z
φ1(x) +φ2(y) +φ3(z),

Ax + B y + Cz = b,
(1.1)

where A∈ Rp×n, B ∈ Rp×m, C ∈ Rp×q, b ∈ Rp and the functions φ1 : Rn→ R, φ2 : Rm→ R
and φ3 : Rq→ R are defined by

φ1(x) =
1

2
xTF x + f T x , φ2(y) =

1

2
yTG y + gT y, φ3(z) =

1

2
zTHz + hTz,

with symmetric positive semidefinite matrices F ∈ Rn×n, G ∈ Rm×m, H ∈ Rq×q and f ∈ Rn,

g ∈ Rm, h ∈ Rq.
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The programming problem (1.1) occurs in various fields — e.g. in image alignment

problem [16], principal component analysis models with noisy and incomplete data [9],

Gaussian graphical model selection [5, 15], and quadratic discriminant analysis models

[13]. The augmented Lagrangian function for the problem (1.1) is defined by

LA(x , y, z,λ) = φ1(x) +φ2(y) +φ3(z)− 〈Ax + B y + Cz − b,λ〉+
α

2
‖Ax + B y + Cz − b‖2

2
,

where λ ∈ Rp is the Lagrange multiplier and α > 0 a penalty parameter.

The augmented Lagrangian method (ALM) [10] is a benchmark for solving convex pro-

gramming problems with linear constraints, and its iteration scheme for (1.1) is

(xk+1, yk+1, zk+1) := arg min
(x ,y,z)
LA(x , y, z,λk),

λk+1 := λk −α(Axk+1+ B yk+1 + Czk+1 − b).
(1.2)

As is shown in [18], the iteration scheme (1.2) can be regarded as a dual ascent method

over the dual variable λ, where the gradient of objective function for the dual of (1.1)

is updated recursively by solving an (x , y, z)-minimisation problem over primal variable

(x , y, z).

Let us now consider an extension of the alternating direction method of multipliers

(ADMM) [7] for the problem (1.1) — viz.

xk+1 := arg min
x∈Rn
LA(x , yk, zk,λk),

yk+1 := arg min
y∈Rm
LA(xk+1, y, zk,λk),

zk+1 := arg min
z∈Rq
LA(xk+1, yk+1, z,λk),

λk+1 := λk −α(Axk+1+ B yk+1 + Czk+1 − b).

(1.3)

It can be interpreted as an alternating minimisation of the augmented Lagrangian function

LA(x , y, z,λ) successively with respect to x , y and z, followed by the update of the Lagrange

multiplier λ. Various examples demonstrate the efficiency of the iteration procedure (1.3)

— cf. Ref. [16,19].

Nowadays, the ADMM is widely used in various applications. The convergence of

the method is proved in the case where two blocks of variables are alternatively updated

[10, 17]. Bai and Tao [3] established convergence for two-block separable quadratic pro-

gramming problems with equality constraints. However, the direct generalisation of the

ADMM to multi-block separable convex minimisation models with objective functions con-

taining three or more functions without coupled variables may be divergent [6]. In par-

ticular, Cai et al. [4] presented a convex minimisation model with linear constraints and

a separable objective function with three function blocks, such that the direct extension

of the ADMM diverges. Nevertheless, they found sufficient conditions for the convergence

of the method. In addition, Lin et al. [12] derived conditions of the global linear conver-

gence of ADMM for convex programs, which minimise the sum of N convex functions with

N -block variables connected by linear constraints. Besides, Lin et al. [11] proved that the


