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Abstract. We provide some computable error estimates in solving a nonsymmetric eigen-
value problem by general conforming finite element methods on general meshes. Based
on the complementary method, we first give computable error estimates for both the
original eigenfunctions and the corresponding adjoint eigenfunctions, and then we in-
troduce a generalised Rayleigh quotient to deduce a computable error estimate for the
eigenvalue approximations. Some numerical examples are presented to illustrate our
theoretical results.
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1. Introduction

The numerical solution of the nonsymmetric eigenvalue problem we discuss here is im-
portant in scientific and engineering computation — e.g. convection-diffusion problems
in fluid mechanics and environmental applications [9,12,13]. Classical a priori error esti-
mates only give the asymptotic convergence order in the standard Galerkin finite element
method for the nonsymmetric eigenvalue problem [4], but a posteriori error estimates are
of great importance for the adaptive finite element method in particular. More discussion
of a posteriori error estimates can be found in Refs. [2, 5–7, 10, 12, 13, 15, 16] and other
references therein.

Here we consider computable a posteriori error estimates for the eigenpair approx-
imation of the nonsymmetric eigenvalue problem, solved by the conforming finite ele-
ment method on general meshes. Our approach is based on the complementary energy
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method [11,15–18]. Recently, the complementary energy method has been applied to de-
rive the a posteriori error estimates for symmetric eigenvalue problems [21] and nonlinear
eigenvalue problems [20]. It is well known that the nonsymmetric eigenvalue problem is
always associated with an adjoint eigenvalue problem. Using the complementary energy
method, we first derive asymptotic upper bounds for the error estimates of the original
eigenfunction approximation and the adjoint eigenfunction approximation. Based on the a

posteriori error estimates for the eigenfunction approximations and a generalised Rayleigh
quotient, we then obtain asymptotic upper bounds for the error estimates of the eigenval-
ues by the conforming finite element method. This means we can provide a computable
range of eigenvalues in the complex plane. Furthermore, the error estimates proposed here
have both efficiency and reliability properties, which is necessary for the a posteriori error
estimator.

The finite element method and corresponding error estimates for the nonsymmetric
eigenvalue problem are given in Section 2. Asymptotic upper-bound computable error
estimates of the original eigenfunction approximation and the adjoint eigenfunction ap-
proximation are proposed in Section 3. Based on the results in Section 3, in Section 4
we provide an upper bound for the error estimate of the eigenvalue approximations of the
nonsymmetric eigenvalue problem. Some numerical examples are presented in Section 5
to illustrate the theoretical analysis, and our concluding remarks are made in Section 6.

2. Finite Element Method

We use the standard notation W s,p(Ω) for Sobolev spaces, and ‖ · ‖s,p,Ω and | · |s,p,Ω for
their associated norms and seminorms, respectively — e.g. see Ref. [1]. For p = 2, we
denote Hs(Ω) = W s,2(Ω) and H1

0(Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the
sense of trace, and ‖ · ‖s,Ω = ‖ · ‖s,2,Ω. Here we consider the complex Hilbert space H1

0(Ω),
and abbreviate ‖ · ‖s,Ω as ‖ · ‖s.

2.1. Nonsymmetric eigenvalue problem

For simplicity, we choose to consider the following nonsymmetric eigenvalue problem:
Find λ ∈ C and u such that

�
−∆u+ b ·∇u+ u = λu in Ω ,
u = 0 on ∂Ω ,

(2.1)

where Ω ⊂ Rd (d = 2,3) is a bounded polygonal domain with boundary ∂Ω, ∆ and ∇
respectively denote the Laplacian and gradient operator, and b = b(x) ∈ (W 1,∞(Ω))d is a
bounded real or complex vector function on Ω.

To address the finite element discretisation, we invoke the following variational form
for the problem (2.1): Find (λ,u) ∈ C × V such that

a(u, v) = λ(u, v) , ∀ v ∈ V , (2.2)


