
East Asian Journal on Applied Mathematics Vol. 7, No. 3, pp. 439-454

doi: 10.4208/eajam.031116.080317a August 2017

Numerical Solution of the Time-Fractional Sub-Diffusion

Equation on an Unbounded Domain in Two-Dimensional

Space

Hongwei Li1, Xiaonan Wu2 and Jiwei Zhang3,∗

1 School of Mathematics and Statistics, Shandong Normal University, Ji’nan 250014,

China.
2 Department of Mathematics, Hong Kong Baptist University, Hong Kong, China.
3 Beijing Computational Science Research Center, Beijing 100193, China.

Received 3 November 2016; Accepted (in revised version) 8 March 2017.

Abstract. The numerical solution of the time-fractional sub-diffusion equation on an

unbounded domain in two-dimensional space is considered, where a circular artificial

boundary is introduced to divide the unbounded domain into a bounded computational

domain and an unbounded exterior domain. The local artificial boundary conditions for

the fractional sub-diffusion equation are designed on the circular artificial boundary by

a joint Laplace transform and Fourier series expansion, and some auxiliary variables are

introduced to circumvent high-order derivatives in the artificial boundary conditions.

The original problem defined on the unbounded domain is thus reduced to an initial

boundary value problem on a bounded computational domain. A finite difference and

L1 approximation are applied for the space variables and the Caputo time-fractional

derivative, respectively. Two numerical examples demonstrate the performance of the

proposed method.
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1. Introduction

Time-fractional sub-diffusion equations describe anomalous diffusion in many com-

plex systems such as porous materials, nuclear magnetic resonance, percolation clusters,

and random and disordered media [1–6]. The time-fractional sub-diffusion equation also

arises in continuous-time random walks with temporal memories, which is characterised

by asymptotic behaviour of the mean-square displacement — i.e. 〈r2(t)〉 ∼ tα with an

anomalous diffusion exponent 0< α < 1 [3,6].
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The increasing importance of time-fractional sub-diffusion equations in many practical

applications has attracted immense interest in recent years, and their solution on bounded

domains has been widely studied analytically and numerically. However, exact solutions

of most fractional differential equations have only been obtained in specific cases asso-

ciated with Fox, Wright and Mittag-Leffler special functions [7–9]. On the other hand,

there are many numerical methods to solve related initial or boundary value problems on

bounded domains in space. One numerical approach for the one-dimensional fractional

sub-diffusion equation with Caputo time-fractional derivatives used the finite difference

method [10], and another effective difference scheme was based on an L1 approximation

for the Caputo time-fractional derivative [11]. An implicit meshless approach was pro-

posed for the time-fractional sub-diffusion equation in two space dimensions [12], and the

alternating direction implicit scheme has also been considered [13–15]. A semi-discrete

method has been invoked for a class of time-fractional diffusion equations describing tracer

solute transport in an aquifer [16], where the numerical predictions were compared with

experimental data. A second-order finite difference method for two-dimensional fractional

percolation equations has also been designed [17], and some other solution methods for

fractional sub-diffusion equations can be found in Refs. [18–23] and references therein.

Numerical solution of time-fractional sub-diffusion equations on unbounded domains

has also received some attention. The artificial boundary method (ABM), said to be very

general and applicable, involves truncating the unbounded domain around the region of

interest by using an artificial boundary and designing a suitable boundary condition on

the artificial boundary. The original problem defined on the unbounded domain is thus

reduced to an initial boundary value (IBV) problem on a bounded computational domain,

which is a good approximation to the original problem with a suitably chosen boundary

condition on the artificial boundary. Recently, Gao & Sun [24] designed exact artificial

boundary conditions for the one-dimensional time-fractional sub-diffusion equation, and

constructed some finite difference schemes to solve the reduced IBV problem. Brunner et.

al [25] constructed exact artificial boundary conditions for a time-fractional diffusion-wave

equation on a two-dimensional unbounded domain, and obtained a series of approximate

artificial boundary conditions with high accuracy. Moreover, the order of convergence and

stability estimates for two finite difference schemes were also analysed rigorously. For the

time-fractional sub-diffusion equation on two-dimensional unbounded domains in space,

Ghaffari & Hosseini [26] derived exact and approximate artificial boundary conditions on a

circular artificial boundary using the Laplace transform and a Fourier series expansion. The

classical Crank-Nicolson method for space variables and L1 approximation for the Caputo

time-fractional derivative were used to solve the reduced problem. Other exact and local

artificial boundary conditions have also been studied [27–31].

Here we consider high-order local artificial boundary conditions (LABCs) for the time-

fractional sub-diffusion equation on two-dimensional unbounded domains. As it is difficult

to design the suitable high-order artificial boundary conditions at the corners of a rectan-

gular domain, in Section 2 a circular artificial boundary ΓR = {(r,θ)|r = R, 0 ≤ θ < 2π}
with radius R is introduced to divide the unbounded domain into two parts — viz. the

bounded computational domain ΩR = {(r,θ)|r < R, 0≤ θ < 2π} and the unbounded exte-


