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Abstract. In this article, we derive a new fourth-order finite difference formula based

on off-step discretisation for the solution of two-dimensional nonlinear triharmonic par-

tial differential equations on a 9-point compact stencil, where the values of u, (∂ 2u/∂ n2)

and (∂ 4u/∂ n4) are prescribed on the boundary. We introduce new ways to handle the

boundary conditions, so there is no need to discretise the boundary conditions involving

the partial derivatives. The Laplacian and biharmonic of the solution are obtained as

a by-product of our approach, and we only need to solve a system of three equations.

The new method is directly applicable to singular problems, and we do not require any

fictitious points for computation. We compare its advantages and implementation with

existing basic iterative methods, and numerical examples are considered to verify its

fourth-order convergence rate.
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1. Introduction

We consider the numerical solution of the two-dimensional (2D) nonlinear triharmonic

equation of the form

ǫ∇6u(x , y)≡ ǫ
�

∂ 6u

∂ x6
+ 3

∂ 6u

∂ x4∂ y2
+ 3

∂ 6u

∂ x2∂ y4
+
∂ 6u

∂ y6

�

= f (x , y,u,ux ,uy ,∇2u,∇2ux ,∇2uy ,∇4u,∇4ux ,∇4uy) , 0< x , y < 1 , (1.1)
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where 0 < ǫ ≤ 1, (x , y) ∈ Ω = {(x , y)|0 < x , y < 1} with boundary ∂Ω, and ∇2u(x , y) ≡
∂ 2u/∂ x2 + ∂ 2u/∂ y2 and ∇4u(x , y) ≡ ∂ 4u/∂ x4 + 2∂ 4u/(∂ x2∂ y2) + ∂ 4u/∂ y4 represent

the 2D Laplacian and biharmonic of the function u(x , y). We assume that the solution

u(x , y) is smooth enough to maintain the order and accuracy of the scheme as high as

possible. Dirichlet boundary conditions of the second kind are considered, given by

u= g1(x , y),
∂ 2u

∂ n2
= g2(x , y),

∂ 4u

∂ n4
= g3(x , y), (x , y) ∈ ∂Ω. (1.2)

The triharmonic equation (1.1) is a sixth-order elliptic partial differential equation en-

countered in viscous flow problems. Two-dimensional slowly rotating highly viscous flow

in small cavities is modelled by the triharmonic equation for the stream function. However,

few researchers have tried to solve triharmonic equations numerically, for it is difficult to

discretise the differential equations and boundary conditions on a compact cell — and

moreover, triharmonic problems require large computing power and a huge amount of

memory that have begun to become available only recently.

Various techniques for the numerical solution of 2D nonlinear biharmonic equations

have been considered in the literature, but not for 2D nonlinear triharmonic equations.

A popular technique for the biharmonic equation is to split it into two coupled Poisson

equations, each of which may be discretised using standard approximations and solved

using a Poisson solver. A difficulty with this approach is that the boundary conditions for

the new variable Laplacian introduced are not known and need to be approximated at

the boundary. Smith [26] and Ehrlich [2, 3] have solved 2D biharmonic equations using

coupled second-order accurate finite difference approximations, and Bauer and Riess [1]

have used a block iterative method. Kwon et al. [7], Stephenson [28], Evans and Mohanty

[4], and Mohanty et al. [9–12] subsequently developed certain second-order and fourth-

order finite difference approximations for biharmonic problems using a 9-point compact

cell. The compact cell approach involves discretising the biharmonic equations, using not

just the grid values of the unknown solution u but also the values of the derivatives ux x ,uy y

and uzz at the selected grid points. For 2D and 3D problems, these researchers solved

systems of three and four equations to obtain the values of u,ux x ,uy y and u,ux x ,uy y ,uzz ,

respectively. Fourth-order compact finite difference schemes have become quite popular,

compared with lower order schemes that require high mesh refinement and hence are less

computationally efficient. The higher order accuracy of the fourth-order compact methods,

combined with the compactness of the difference stencil, yields highly accurate numerical

solutions on relatively coarse grids with greater computational efficiency.

One numerical approach for solving the 2D triharmonic equation (1.1) is to discretise

the differential equation on a uniform grid using 49-point approximations with a trun-

cation error of order h2. This approximation connects central point values, in each case

involving 48 neighbouring values of u in a 7× 7 grid. The central value of u is connected

to grid points three grids away in each direction from the central point, and the differ-

ence approximations need to be modified at grid points near the boundaries. However, in

the solution of the linear and nonlinear systems obtained through such 49-point discreti-

sation of the 2D triharmonic equation, there are serious computational difficulties that


