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Abstract. This article discusses key characteristics of a semi-adaptive finite difference

method for solving singular degenerate reaction-diffusion equations. Numerical stabil-

ity, monotonicity, and convergence are investigated. Numerical experiments illustrate

the discussion. The study reconfirms and improves several of our earlier results.
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1. Introduction

Let Ω⊂ Rn denote a simply connected finite convex domain, consider a constant b > 0,

and let u be sufficiently smooth in Ω̄. Many important multiphysics procedures, such as the

n-dimensional quenching-combustion process, can be modelled ideally through the follow-

ing singular reaction-diffusion initial-boundary value problem, or quenching problem:

σ(x)ut =∇
2u+ f (u), x ∈ Ω, t > t0, (1.1)

u(x , t) = 0, x ∈ ∂Ω, t > t0, (1.2)

u(x , t0) = u0(x), x ∈ Ω, (1.3)

where ∇2 is the Laplacian, ∂Ω is the boundary of Ω, 0≤ u0≪ b, and

f (0) = f0 > 0, fu(u)> 0, u ∈ [0, b), lim
u→b−

f (u) =∞.

The degeneracy function σ(x) = 0 for x ∈ Ω0 ⊂ ∂Ω [4,6,10,11].
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It has been observed that when the shape of Ω is fixed there exists a critical number

a∗ > 0 such that if a (the n-volume of Ω) is less than a∗ then the solution of Eqs. (1.1)–(1.3)

exists globally. Otherwise, there exists a finite time T ∗(a) such that

lim
t→T∗(a)

sup
x∈Ω

u(x , t) = b.

Such an a∗ is called a critical value, T ∗ a critical time, and b the ignition temperature

[4, 10]. The function u is referred to as a quenching solution in the second case. The

one-dimensional form of Eqs. (1.1)–(1.3) exhibits a particularly interesting example of the

quenching phenomenon when b = 1, σ ≡ 1 and

f (u) =
1

1− u
, (1.4)

where the critical value a∗ ≈ 1.53045607591062 [4, 18]. Recent investigations have also

revealed that if solutions of Eqs. (1.1)–(1.3) exist they must increase monotonically as t

increases at any fixed location x ∈ Ω [5,10,17].

We address the numerical solution of the one-dimensional form. Without any loss

of generality we set b = 1 and map a general spatial interval [s, s + a] to [0,1], and

consequently consider the dimensionless problem

σ(x)ut =
1

a2
ux x + f (u), 0< x < 1, t0 < t ≤ T, (1.5)

u(0, t) = u(1, t) = 0, t > t0, (1.6)

u(x , t0) = u0(x), 0< x < 1, (1.7)

where T < ∞ is sufficiently large. The degeneracy and source functions of particular

interest in multiphysics applications are

σ(x) = ax p(1− x)1−p, f (u) =
1

(1− u)q
, 0≤ p ≤ 1, q > 0, (1.8)

for which the following limits are equivalent [5,18]:

lim
t→Ta

sup
0<x<1

u(x , t) = 1, lim
t→Ta

sup
0<x<1

ut(x , t) = +∞ whenever a > a∗.

This article is organised as follows. In Section 2 we introduce a second-order Crank-

Nicolson scheme for solving Eqs. (1.5)-(1.8), where a uniform spatial mesh is used but

adaptive grids controlled by a properly designed arc-length monitoring function are con-

sidered in the temporal direction. The structure and approximation is analysed, and both

numerical stability in the von Neumann sense and nonlinear error propagation estimates

are discussed. Motivated by the desire to preserve the most important physical characteris-

tics of solutions, in Section 3 we focus on the monotonicity and convergence of the numer-

ical solution sequence generated by the semi-adaptive finite difference scheme. Necessary

constraints to ensure the correct multiphysical features are obtained, and we remark on the


