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Abstract. In this paper, a new type of gradient recovery method based on vertex-edge-

face interpolation is introduced and analyzed. This method gives a new way to recover

gradient approximations and has the same simplicity, efficiency, and superconvergence

properties as those of superconvergence patch recovery method and polynomial pre-

serving recovery method. Here, we introduce the recovery technique and analyze its

superconvergence properties. We also show a simple application in the a posteriori

error estimates. Some numerical examples illustrate the effectiveness of this recovery

method.
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1. Introduction

Recently, a posteriori error estimates based on gradient recovery methods are active

and attract more and more attention ( [1–4, 8, 10, 12, 14–16, 20, 21, 23–25, 27]). One of

the most widely used in practice is Zienkiewicz-Zhu’s Superconvergence Patch Recovery

(SPR) method ( [27]) based on a local discrete least squares fitting. The popularity of

this method relies on various factors: the method is rather independent of the problem, it

is cheap to compute and easy to implement and the method works very well in practice.

The robustness of the SPR method is dependent on its superconvergence property under

structured meshes ( [22]). However, [25] shows that the SPR is not superconvergence

for linear element under the uniform triangulation of the Chevron pattern. The Polyno-

mial Preserving Recovery (PPR) which overcomes this restriction is one of the most recent

least-squares-based procedures ( [16, 21, 24, 25]). This method is based on computing a

local second order polynomial on a suitable patch associated with each mesh vertex via
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a discrete least-squares procedure. Then, the nodal gradient can be computed, which are

family linearly interpolated. The PPR-recovered gradient has superconvergence proper-

ties in mildly structured meshes, and, in such cases, it was shown to be asymptotic exact

( [21]). Both SPR and PPR select the node values as samples. The effectiveness of the

gradient recovery method is rooted in the superconvergence theory. However, from the

superconvergence theory ( [12,14,15]), we know that the vertex-edge-face interpolations

have better superconvergent properties than the common Lagrange interpolations. In this

paper, a new type of gradient recovery method based on the vertex-edge-face interpolation

is proposed and analyzed. The new gradient recovery method, given a finite element space

of degree k, instead of gradient values at some sampling points on element patches (as in

the SPR method and PPR method), selects gradient integration at the sampling edges and

faces to obtain recovered gradient at each assembly vertex, edge and face. We shall prove

that the new method has superconvergence for the superconvergent mesh (such as uni-

form triangular mesh of the Regular pattern and Chevron pattern, mildly meshes and so

on) ( [3,6,12,14,15,21,26]). In computer implementation, there is no significant differ-

ence between the new method with SPR or PPR compared with the overall cost in finite

element solution.

The simple application of this recovery method to a posteriori error estimate is also

discussed. The reader is referred to [1, 2] for analysis of recovery type a posteriori error

estimators.

The paper is organized as follows. We give the recovery technique in Section 2 and

Section 3 is devoted to the superconvergence analysis. Section 4 shows the application

of the recovery method to a posteriori error estimate. Numerical results are presented in

Section 5. Finally, Section 6 contains some concluding remarks.

2. The Finite Element Method and Recovery Technique

This section is devoted to the introduction of the recovery technique. For simplicity, we

consider the second order elliptic problem: Find a scalar function u such that

−∇ · (A∇u) + bu = f , in Ω, (2.1)

u = uD, on ∂Ω, (2.2)

whereA ∈R2×2 is a positive definite matrix in Ω, b ≥ 0 and Ω⊂R2 is a bounded domain

with Lipschitz boundary ∂Ω.

In order to use the finite element method to compute the problem (2.1)-(2.2), we need

to introduce a triangulation Th on the domain Ω and then define the finite element space

Sh ⊂ H1(Ω) as

Sh =
�

v ∈ H1(Ω) : v|e ∈ Pk(e), ∀e ∈ Th

	
,

where Pk(e) is the space of polynomials of degree not greater than a positive integer k.

The finite element method is to find uh ∈ SD
h

such that

a(uh, v) = ( f , v), ∀v ∈ Sh, (2.3)


