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Abstract. In this paper we use two numerical methods to solve constrained optimal
control problems governed by elliptic equations with rapidly oscillating coefficients: one
is finite element method and the other is multiscale finite element method. We derive
the convergence analysis for those two methods. Analytical results show that finite
element method can not work when the parameter ǫ is small enough, while multiscale
finite element method is useful for any parameter ǫ.
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1. Introduction

Optimal control plays a very important role in many engineering applications. Efficient
numerical methods are necessary to successful applications of optimal control. Finite ele-
ment method seems to be the most widely used numerical method in computing optimal
control problems, and the relevant literature is huge. It is impossible to give even a very
brief review here. A systematic introduction of finite element method for PDEs and optimal
control problems can be found in [1,9,10,24,26]. For elliptic and parabolic optimal con-
trol problems, a priori error estimates of finite element method were established in [18],
a posteriori error estimates of residual type have been derived in [20, 21], a posteriori
error estimates of recovery type have been derived in [17, 19], and some superconver-
gence results can be found in [2–4]. However, many fundament and practical problems in
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engineering have multiscale solutions, such as composite materials, porous media, turbu-
lent transport in high Reynods number flows and so on. The direct numerical simulation
of multiple scale problems is difficult even with modern supercomputers for the requisite
of tremendous amount of computer memory and CPU time which can easily exceed the
limitation of today’s computer resources.

In practical applications, it is often sufficient to predict the large scale solutions to
certain accuracy. Multiscale finite element method [8, 11, 13, 14, 27] provides an efficient
way to capture the large scale structures of the solutions on a coarse mesh. The main idea
is to construct multiscale finite element base functions which capture the local small scale
information within each element. The small scale information is then brought to the large
scales through the coupling of the global stiffness matrix. It is through these multiscale
base functions and the finite element formulation that the effect of small scales on the
large scales is correctly captured. Mixed multiscale finite element methods for multiscale
problems can be found in [5, 15, 22]. Recently, Chu et al. investigated a new multiscale
finite element method for high-contrast elliptic interface problems in [6] and Parvazinia
considered a multiscale finite element for the solution of transport equations in [25].

The purpose of this work is to obtain the convergence analysis for finite element
method and multiscale finite element method solving a constrained optimal control prob-
lems governed by elliptic equations with rapidly oscillating coefficients. Such problems
often arise in composite materials and flows in porous media.

Let Ω be a bounded domain in Rn(n= 2,3)with a Lipschitz boundary ∂Ω. In this paper,
we adopt the standard notation W m,q(Ω) for Sobolev spaces on Ω with norm ‖ · ‖W m,q(Ω)

and seminorm | · |W m,q(Ω). We set H1
0(Ω) ≡

¦

v ∈ H1(Ω) : v|∂Ω = 0
©

and denote W m,2(Ω)

by Hm(Ω). In addition, c or C denotes a generic positive constant.
We are interested in the following optimal control problem:
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−∇ · (A(x , x/ǫ)∇yǫ) = Bu, in Ω,

yǫ = 0, on ∂Ω,

(1.1)

where K is a nonempty closed convex set in L2(Ω), A(x , x/ǫ) is a symmetric matrix which
satisfies the uniform ellipticity condition:

α|ξ|2 ≤ ai j(x , x/ǫ)ξiξ j ≤ β |ξ|
2, ∀ξ ∈ Rn,

with 0 < α < β , yd ∈ L2(Ω), B is a continuous linear operator. Further more, we assume
that ai j(x , x̃) is periodic function with respect to the unit cube I in the "fast" variable
x̃ = x/ǫ, and

K =
¦

v ∈ L2(Ω) : a ≤ v ≤ b, a.e. in Ω
©

,

where a and b are constants.
The paper is organized as follows: In Section 2, we shall construct a finite element ap-

proximation scheme and a multiscale finite element approximation scheme for the model


