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Abstract. We consider a Galerkin method based on Legendre and Laguerre polynomials

and apply it to the Euler-Bernoulli beam equation. The matrices of the method are

well structured, which results in substantial reduction of computational cost. Numerical

examples demonstrate the efficiency and a high accuracy of the algorithm proposed.
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1. Introduction

The beam models describe transversely vibrating beams with external forcing functions.

They have been vigorously studied in literature — cf. [26]. In particular, the Euler-Bernoulli

beam model considers the undamped transverse vibrations of a flexible straight beam with

no support contribution to the strain energy of the corresponding system [6, 28, 37]. In

spite of being one of the simplest models, it provides reasonable results in numerous engi-

neering problems. To find the solution of the Euler-Bernoulli problem, various algorithms

have been developed, including finite difference methods [23, 27], alternating direction

implicit methods [5], alternating group explicit iterative method [24], Adomian decom-

position method [38, 39], sinc-Galerkin method [21, 22, 36], and various spline meth-

ods [6,10,28,31,32,34].

Note that spectral methods play an important role in applications such as fluid dynam-

ics, weather prediction and ocean dynamics — cf. Refs. [11,25,29,33]. They allow to find

approximate solutions of integral and differential equations arising in chemistry, physics, bi-

ology, engineering, astrophysics and space sciences [35]. The main feature of such methods
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consists in the representation of the solution as a linear combination of orthogonal poly-

nomials, the coefficients of which are determined by a suitable method. Among the most

popular are collocation, tau- and Galerkin methods [11]. Collocation methods demonstrate

good results for nonlinear problems [7–9], whereas Galerkin methods are more handy in

linear ones. In particular, the Galerkin methods can use finite combinations of various

orthogonal polynomials satisfying initial or boundary conditions. For example, they have

been utilised to find approximate solutions of boundary and initial value problems for high

order linear differential and singular Lane-Emden equations — cf. Refs. [1–4,17–19].

Here, we apply a Legendre-Laguerre-Galerkin algorithm to the uniform Euler-Bernoulli

beams. To the best of authors’ knowledge, this version of the Galerkin method has not been

previously considered for the Euler-Bernoulli beam equation. In Section 2 we recall prop-

erties of Legendre and Laguerre polynomials. Section 3 deals with a Galerkin method for

the uniform Euler-Bernoulli beam model. Numerical examples are presented in Section 4

and our concluding remarks are in Section 5.

2. Preliminaries

2.1. Legendre polynomials

The polynomials Pn(x), n = 0,1,2, · · · , defined on the interval (−1,1) and satisfying the

orthogonality relation

1∫

−1

Pk(x)Pj(x) d x =
2

2k+ 1
δk j,

where δk j is the Kronecker delta, are called Legendre polynomials. We note the relations

Pk(±1) = (±1)k, and
dqPk(±1)

d xq
=
(±1)k+q(k+ q)!

2qq! (k − q)!
, (2.1)

which will be used later on.

Lemma 2.1. If k is a nonnegative integer, then

(1− x2)2Pk(x) =

4∑

r=0

qr(k)Pk−2r+4(x), (2.2)


