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Abstract. Applying Maple symbolic computations, we derive eight sets of mixed lump-
soliton solutions to the (2 + 1)-dimensional BKP equation. The solutions are analytic
and allow the separation of lumps and line solitons.
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1. Introduction

It is well known that solitons describe various significant nonlinear phenomena in na-
ture [1, 39] and the Hirota bilinear method provides a power tool for solving integrable
equations [16]. Positons and complexitons are other typical solutions of integrable equa-
tions [25, 43], and the interaction between different classes of solutions leads to a better
understanding of nonlinear phenomena [35]. In particular, the long wave limits of solitons
generate lump solutions, rationally localized solutions in all directions in space, and many
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other ones — cf. Refs. [1,40]. Hirota bilinear forms play a crucial role in finding such exact
solutions but the algorithm heavily relies on try and error experiments [5,16].

Let us recall [30] that the KP equation

(ut + 6uux + ux x x)x − uy y = 0,

has the following set of lump solutions:

u = 2(ln f )x x , f =
�

a1 x + a2 y +
a1a2

2 − a1a6
2 + 2 a2a5a6

a1
2 + a5

2
t + a4

�2

+
�

a5 x + a6 y +
2a1a2a6 − a2

2a5 + a5a6
2

a1
2 + a5

2
t + a8

�2
+

3(a1
2 + a5

2)3

(a1a6 − a2a5)
2

,

where ai are arbitrary parameters such that a1a6 − a2a5 6= 0. This set contains a subset of
lump solutions of the form

u = 4
−[x + a y + (a2 − b2)t]2 + b2(y + 2at)2 + 3/b2

{[x + a y + (a2 − b2)t]2 + b2(y + 2at)2 + 3/b2}2 , (1.1)

with two free parameters a and b [38]. The situation is not unique and there are many
integrable equations with lump solutions — e.g. three-dimensional three-wave resonant
interactions [21], the BKP equation [14, 45], the Davey-Stewartson equation II [40], the
Ishimori-I equation [17] and so on. Besides, non-integrable equations, such as (2 + 1)-
dimensional generalized KP, BKP and Sawada-Kotera equations, also have lump solutions
— cf. Refs. [8,32,36,48,53].

It is worth noting that the general rational solutions of integrable equations have been
derived within the framework of Wronskian, Casoratian, Grammian and Pfaffian formu-
lations [1, 16]. The set of equations studied contains a variety of physically significant
equations such as the KdV and Boussinesq equations, the nonlinear Schrödinger equation
in (1+1)-dimensions, the KP and BKP equations in (2+1)-dimensions, and the Toda lattice
equation in (0 + 1)-dimensions [2, 7, 13, 34, 35]. General rational solutions of nonlinear
partial differential equations — e.g. generalized bilinear differential equations have been
also discussed [3,37,47,50–52].

Here we consider a (2+ 1)-dimensional BKP equation of [9,18]— viz.

PBKP(u) := (ut + 15uux x x + 15ux
3 − 15uxuy + u5x )x − 5ux x x y − 5uy y = 0. (1.2)

This is a first member in the BKP integrable hierarchy [6, 41], represented by the (2+ 1)-
dimensional generalization of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation

vt + 15vvx x x + 15vx vx x + 45v2vx + v5x = 0. (1.3)

If v = ux and the function u depends on x and t only, then (1.2) becomes the Eq. (1.3).
The underlying spectral problem

−φy +φx x x + (3v −λ)φ = 0, (1.4)
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has order 3. Hence one can apply the inverse scattering transform [1] to the Cauchy prob-
lem for the Eq. (1.3) — cf. Refs. [4,20].

In this paper we present eight sets of interaction solutions of the (2 + 1)-dimensional
BKP equation, obtained with the Maple symbolic computation software. These mixed lump-
soliton solutions are an addition to the set of the lump and line soliton solutions known.
Starting with the Hirota bilinear form of the (2+1)-dimensional BKP equation, we establish
combinations of the hyperbolic cosine and quadratic functions satisfying the bilinear BKP
equation.

2. Abundant Interaction Solutions

Let us start with the first-order logarithmic derivative transformation

u= 2(ln f )x , (2.1)

routinely used in the Bell polynomial theory of integrable equations [15, 29]. Applying
this transformation to the (2+1)-dimensional BKP equation (1.2), we transform it into the
(2+ 1)-dimensional bilinear Hirota equation

BBKP( f ) := (D6
x − 5D3

x Dy + Dx Dt − 5D2
y) f · f

= −10 f y y f + 10 f y
2 + 2 fx t f − 2 ft fx − 10 fx x x y f + 30 fx x y fx − 30 fx y fx x

+ 10 f y fx x x + 2 f6x f − 12 f5x fx + 30 f4x fx x − 20 fx x x
2 = 0. (2.2)

Note that the (2+ 1)-dimensional BKP and bilinear BKP equations satisfy the relation

PBKP(u) =
�BBKP( f )

f 2

�

x
. (2.3)

Thus, if the function f is a solution of the bilinear BKP equation (2.2), then u = 2(ln f )x is
a solution of the BKP equation (1.2).

Our goal now is to find interaction solutions of the BKP equation (1.2) located between
the lumps and line solitons and represented as a combination of the hyperbolic cosine
and quadratic functions. In addition to the popular Hirota perturbation technique and
symmetry constraints — cf. Refs. [10,11,22–24,55], this approach amends basic tools for
dealing with soliton and dromion-type solutions. More precisely, to discover such solutions,
we employ the Maple computer algebra system starting with the combination

f = ξ1
2 + ξ2

2 + coshξ3 + a13, (2.4)

where the wave variables are defined by

ξ1 = a1 x + a2 y + a3t + a4,

ξ2 = a5 x + a6 y + a7t + a8,

ξ3 = a9 x + a10 y + a11 t + a12.

(2.5)
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The ansatz contains unknown real-valued parameters ai, i = 1,2, · · · , 13.
In this work, the three special cases — viz. a9 = 0, a11 = 0 and a10 = 0 are considered.

Symbolic computations show that conditions a9 = 0 and a11 = 0 do not produce any non-
trivial solutions, whereas the case a10 = 0 generates eight sets of nontrivial solutions of the
resulting algebraic systems. Other non-trivial solutions can be found in Ref. [33,46,49,54].
We note that if a parameter ai is not specifically defined, then it can take any value within
the corresponding solution set, provided that all expressions there make sense.

1. The set of solutions by solving in terms of the parameters a1 and a5:
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,

where b is a solution of the equation b2 − 2 a5 b− 3 a1
2 + a5

2 = 0.
2. The set A of solutions by solving in terms of the parameters a2 and a6:
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,

where b is a solution of the equation b2 − 2 a6 b− 3 a2
2 + a6

2 = 0.
3. The set B of solutions by solving in terms of the parameters a2 and a6:
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,

where b is a solution of the equation b2 − 2 a2 b+ a2
2 − 3 a6

2 = 0.
4. The set of solutions by solving in terms of the parameters a3 and a7:
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where b is a solution of the equation b2 − 2 a3 b+ a3
2 − 3 a7

2 = 0.
5. The set A of solutions by solving in terms of the parameters a1 and a6:
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where b is a solution of the equation a1
4 b4 − 3 a6

2 = 0.
6. The set B of solutions by solving in terms of the parameters a1 and a6:

a2 =
2 a1
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4 + b a6 − 2 a6

2
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where b is a solution of the equation b2 − 4 a6 b+ 4a6
2 − 3 a1

2a9
4 = 0.

7. The set A of solutions by solving in terms of the parameters a1 and a7:
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where b is a solution of the equation 100 a1
2 b8 − 3 a7

2 = 0.
8. The set B of solutions by solving in terms of the parameters a1 and a7:
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where b is a solution of the equation b2 + 4 a7 b+ 4a7
2 − 75 a1

2a9
8 = 0.

It is clear that all the quadratic equations above have real solutions, and so all sets
of parameters a j are well defined. These sets generate eight classes of the combination
solutions (2.4)-(2.5) to the bilinear BKP equation (2.2). Subsequently, the transformation
(2.1) produces eight classes of mixed lump-soliton solutions of the (2+1)-dimensional BKP
equation (1.2) and for positive a13, the interactions solutions are analytic.

The interaction solutions become, respectively, line or lump solutions depending on
whether the quadratic function or the hyperbolic cosine disappears. Let us emphasize that
the interaction solutions found contain a line soliton solution. Therefore, they do not ap-
proach zero in all directions in the space of both spatial and temporal variables. Moreover,
due to the presence of a lump solution, they form a peak at a finite time.

The graph of the interaction solution of the (2+1)-dimensional BKP equation (1.2) for
the parameters a10 = 0, b = 1+

p
3 and

a1 = −1, a2 = 2
p

3− 2, a3 = 40+ 40
p

3, a4 = 1,

a5 = 1, a6 = 2+ 2
p

3, a7 = 40
p

3− 40, a8 = −1, (2.6)

a9 = 2, a11 = −32, a12 = 2, a13 = 1,



Abundant Mixed Lump-Soliton Solutions to the BKP Equation 229

Figure 1: Solution of (2.6) for t = 0, t = 0.1 and t = 0.2. Top: 3d plots. Bottom: Contour plots.

is presented in Fig. 1.
We also tried to solve the resulting systems of nonlinear algebraic equations with other

combinations of parameters but have not found any new non-trivial solutions.

3. Concluding Remarks

Applying Maple symbolic computations, we found eight sets of exact mixed lump-
soliton solutions of the (2+ 1)-dimensional BKP equation. These solutions generate lump
and line soliton solutions as special cases, and the technique adopted above provides a sup-
plement to the different combination theories in [31,42,44,56]. It would be interesting to
know which of these new solutions can be detected by the Wronskian technique [12,19].

Let us also note that the systems of nonlinear algebraic equations connected with the
BKP equation, are usually not solvable in general setting but only for specific sets of parame-
ters. Combination solutions of generalized bilinear and tri-linear differential equations with
generalized bilinear derivatives [26] are also of interest, since the corresponding mixed in-
teraction solutions are different from the resonant ones generated via linear superposition
principle [27,28]. In particular, the BKP-like equation defined with p = 3,

(D6
3,x − 5D3

3,x D3,y + D3,x D3,t − 5D2
3,y) f · f = 0,

has distinct lump-soliton solutions, whereas lump solutions derived from quadratic func-
tions remain the same — cf. Ref. [37].
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