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Abstract. A new generalised Hadjidimos preconditioner and preconditioned gener-

alised AOR method for the solution of the linear complementarity problem are pre-

sented. The convergence and convergence rate of the new method are analysed, and

numerical experiments demonstrate that it is efficient.
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1. Introduction

Many researchers have studied various preconditioners to solve the well known linear

algebraic system

Ax = b ,

so that corresponding classical iterative methods such as Jacobi or Gauss-Seidel converge

faster. Hadjidimos [10] considered the preconditioner

P1(α)≡ I + S1(α) =
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where α= [0,α2, · · · ,αi , · · · ,αn] ∈ Rn involves constants αi ≥ 0, i = 2(1)n and

S1(α) =
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. (1.2)

In the case where αi = 1, i = 2(1)n, P1(α) is the Milaszewicz preconditioner [17], which

eliminates the elements of the first column of A below the diagonal.

It has been found that preconditioner modifications can improve the convergence rates

of classical iterative methods [10]. Wang [11] presented a preconditioner P = I + Sαβ ,

where α, β are constants and

Sαβ =
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If β = 0, the Wang preconditioner becomes the Evans preconditioner [7]. In this paper, we

extend the Hadjidimos and Wang preconditioner approach by constructing a generalised

Hadjidimos preconditioner P1(γβ) = I + S1(γβ), where

S1(γβ) =
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γ = [0,γ2, · · · ,γi, · · · ,γn] ∈ Rn, γi ≥ 0, i = 2(1)n, and βi, i = 2(1)n are constants. Thus

in (1.4), if γi = 1, i = 2(1)n, βi = 0, i = 2(1)n, P1(γβ) we have the Milaszewicz precon-

ditioner, and if γi = 0, i = 2(1)n−1, βi = 0, i = 2(1)n−1, P1(γβ) the Wang preconditioner.

Given the established efficiency of preconditioners for solving linear algebraic systems,

in this paper we consider the solution of the linear complementarity problem [13]:

find x ∈ Rn such that

x ≥ 0, Ax − f ≥ 0, x⊤(Ax − f ) = 0 , (1.5)


