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Abstract. We discuss spectral collocation methods based on Jacobi-Gauss-Lobatto points

and Laguerre and Hermite collocation for unbounded domains. These methods are well

conditioned, and some numerical experiments demonstrate quite high accuracy.
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1. Introduction

The spectral collocation method that we consider approximates derivatives by direct

differentiation of Lagrange interpolation polynomials at Gauss-type points. In applications

involving non-linear problems or equations with variable coefficients, the performance of

this approach is comparable to high-order finite difference methods and superior to the

spectral method with modal basis functions. Nevertheless, it involves ill-conditioned linear

systems when direct solvers and iteration methods exploiting a large number of collocation

points are used. Various approaches to address this issue have been discussed. Coutsias and

others [4, 5, 8, 16] proposed the integration preconditioning method, and Greengard [9]

and El-Gendi [7] considered the spectral integration method. Wang et al. [23] introduced

a Legendre (Chebyshev) collocation method based on a Birkhoff interpolation [6,17] such

that the corresponding system of linear equations is well-conditioned and the condition

numbers do not depend on N , and their approach produces the exact inverse of the pseu-

dospectral differentiation matrix of the highest derivative with only interior collocation

points involved. The minimal eigenvalue of the second Jacobi pseudospectral differentia-

tion matrix is a constant, so the differential operator of the highest order and the underlying

boundary conditions can be associated with a suitable Birkhoff interpolation.
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This opens the way to a new well-conditioned Jacobi-collocation method with another

basis, to produce optimal integration preconditioners for usual collocation methods for ex-

act boundary conditions. We provide such a new collocation scheme, where simulations

for second order differential equations for example show both stability and high accuracy.

However, numerical simulations in various areas of application (e.g. in quantum mechan-

ics, biology, or financial mathematics) involve differential equations on unbounded do-

mains, so the second part of this article is devoted to alternative Laguerre and Hermite

collocation methods. Further, if the smallest eigenvalues of the corresponding matrices de-

pend on their dimensions [24] such that these methods cannot be used, we construct new

Birkhoff interpolation basis functions to produce both well-conditioned systems of linear

algebraic equations and optimal preconditioners. The corresponding collocation schemes

for second order differential equations with Dirichlet boundary conditions demonstrate

high accuracy and improved stability. In Section 2, the interpolation basis uses Jacobi-

Gauss-Lobatto (JGL) points. In Section 3 and Section 4, Laguerre-Gauss-Radau (LGR) and

Hermite-Gauss points are adopted for the construction of new bases. All of these bases are

incorporated in the corresponding collocation schemes used in the numerical simulations.

Our concluding remarks are in Section 5.

2. Motivations and Observations from Collocation on a Finite Interval

In this section, we extend the well-conditioned collocation method from Ref. [23] to

general Jacobi-Gauss-type points. Our goal is to develop new collocation schemes for un-

bounded domains.

2.1. Birkhoff interpolation basis on Jacobi-Gauss-Lobatto (JGL) points

Let {h j} be the Lagrange interpolating polynomials associated with the JGL points

{x j}Nj=0
where x0 = −xN = −1 [19]. The differentiation matrices are defined as
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and we set D := D
(1) and Din := D

(1)

in
. Explicit formulas for the entries of the matrix D and

the relation are [19]

D
(k) = DD · · ·D = D

k, k ≥ 1 .

It is also known that the condition numbers of the matrices D
(k)

in
grow like N2k — cf. Refs.

[2,25]. We are particularly interested in the second-order differentiation matrix. Weideman

& Trefethen [25] studied eigenvalues of the pseudospectral second derivative matrix with

homogeneous Dirichlet boundary conditions, and observed that only about 2N/π of the

eigenvalues of the continuous operator are accurately approximated by the eigenvalues of

the discrete operator. Vandeven [22] proposed a rigorous proof of that conjecture for the

Galerkin Legendre spectral method, and Welfert [26] showed his results are also valid for

the Legendre pseudospectral collocation method. Analogously, in the general Jacobi case

the smallest eigenvalue of the matrix −D
(2)

in
can be approximated by π2/4≈ 2.467.


