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Abstract. A finite difference scheme for the one-dimensional space fractional diffusion

equation is presented and analysed. The scheme is constructed by modifying the shifted

Grünwald approximation to the spatial fractional derivative and using an asymmetric

discretisation technique. By calculating the unknowns in differential nodal point se-

quences at the odd and even time levels, the discrete solution of the scheme can be

obtained explicitly. We prove that the scheme is uniformly stable. The error between

the discrete solution and the analytical solution in the discrete l2 norm is optimal in

some cases. Numerical results for several examples are consistent with the theoretical

analysis.
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1. Introduction

Fractional differential equations (FDE) have extensive application in areas of physics [2,

4,5,16,35,41], chemistry [18], hydrology [1,3,33,34] and in finance [29,30,32]. In par-

ticular, FDE describe anomalous phenomena that cannot be modelled accurately by second-

order diffusion equations. Thus in contaminant transport in groundwater flow for example,

the solutes moving through aquifers generally do not follow a second-order diffusion equa-

tion because of large deviations due to Brownian motion, so a governing equation with

fractional-order anomalous diffusion provides a more adequate description [3].

Analytical methods invoking Fourier or Laplace transforms have been developed for FDE

in a few cases [28, 39], but numerical methods are usually needed. Numerical solutions

have been obtained via finite difference methods [6,8,9,19,22–25,36–38], finite element

methods [10,11,15], the DG method [14] and spectral methods [20,21,40]. Discretisation
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procedures and corresponding convergence analysis have been investigated, and in partic-

ular a shifted Grünwald discretisation with implicit time-stepping has been shown to be

stable, convergent and first-order accurate in the space mesh size [26,27].

Unlike operators in integer-order diffusion equations, fractional diffusion operators are

nonlocal and so raise subtle stability issues for corresponding numerical approximations.

Numerical methods for FDE tend to yield full coefficient matrices with O (K3) computa-

tional and O (K2) storage costs where K is the number of unknowns, in contrast to numer-

ical methods for second-order diffusion equations that usually generate banded coefficient

matrices with O (K) nonzero entries.

In this article, we present a finite difference scheme to solve the FDE that is constructed

by modifying the shifted Grünwald’s method [26] with an asymmetric technique [31] and

adopting different nodal point stencils at odd and even time levels. We prove that the

scheme is uniformly stable. Formally, the scheme is implicit. However, the solution can

be obtained explicitly by sequencing the nodal points from one side to the other, and then

calculating the unknowns according to the sequences at the odd time levels and calculating

the unknowns according to the opposite sequences at even time levels. The error between

the numerical and analytical solutions in the discrete l2 norm is O (∆t2h−2(α−1) +∆t + h),

where α ∈ (1,2) is the order of the spatial fractional derivative, and h and ∆t are the

respective space and time mesh sizes. The error estimate is thus optimal, with the same

order as the implicit shifted Grünwald finite difference scheme under the condition ∆t =

O (hα−0.5). For α ≤ 1.5, the condition ∆t = O (h) needed to balance the error due to

the time and space discretisation is sufficient to verify the optimal error estimate. The

asymmetric technique has previously been used to construct parallel algorithms by other

researchers — e.g. see [12, 13, 42, 43]. Earlier authors have investigated the stability and

shown that the truncation error is O (∆th−1 + ∆t + h) for parabolic problems [12, 13],

or exploited the asymmetric technique in real calculations [42, 43]. To the best of our

knowledge, this article is the first to show that the error between the discrete and the

analytical solutions is O (∆t2h−2(α−1)).

In Section 2, we present our numerical scheme, and show that the discrete solution

can be obtained explicitly by sequencing the nodal points apppropriately. In Section 3, we

prove that the scheme is uniformly stable, and derive the error estimate in Section 4. In Sec-

tion 5, numerical experiments are presented to verify the theoretical results. Throughout,

C denotes a generic constant that may take different values in different contexts.

2. The Asymmetric Finite Difference Scheme

We consider the following initial-boundary value problem involving a one-dimensional

FDE of order α, where 1< α < 2 [26,27,33]:

∂ u(x , t)

∂ t
= d(x)

∂ αu(x , t)

∂ xα
+ f (x , t) , x ∈ (L,R) , t ∈ (0, T ] , (2.1)

u(x = L, t) = 0 , u(x = R, t) = bR(t) , t ∈ (0, T ] , (2.2)

u(x , 0) = φ(x) , x ∈ (L,R) . (2.3)


