Sinc Nyström Method for Singularly Perturbed Love’s Integral Equation

Fu-Rong Lin¹,*, Xin Lu¹ and Xiao-Qing Jin²

¹ Department of Mathematics, Shantou University, Shantou, Guangdong, 515063, China.
² Department of Mathematics, University of Macau, Macao, China.

Received 29 November 2012; Accepted (in revised version) 22 February 2013
Available online 28 February 2013

Abstract. An efficient numerical method is proposed for the solution of Love’s integral equation

\[f(x) + \frac{1}{\pi} \int_{-1}^{1} \frac{c}{(x-y)^2 + c^2} f(y) dy = 1, \quad x \in [-1,1] \]

where \(c > 0 \) is a small parameter, by using a sinc Nyström method based on a double exponential transformation. The method is derived using the property that the solution \(f(x) \) of Love’s integral equation satisfies \(f(x) \to 0.5 \) for \(x \in (-1,1) \) when the parameter \(c \to 0 \). Numerical results show that the proposed method is very efficient.

AMS subject classifications: 45L10, 65R20

Key words: Love’s integral equation, sinc function, Nyström method, DE-sinc quadrature.

1. Introduction

We consider numerical methods for the solution of Love’s integral equation

\[f(x) + \frac{1}{\pi} \int_{-1}^{1} \frac{c}{(x-y)^2 + c^2} f(y) dy = 1, \quad x \in [-1,1], \]

(1.1)

where \(c > 0 \) is a small parameter. This integral equation arises in determining the capacity of a circular plate condenser, and it has been shown to possess a unique, continuous, real and even solution [5].

Different numerical methods for the solution of (1.1) have been proposed by several authors. The equation with \(c = 1 \) was considered in Refs. [2–4, 17, 18]. Agida & Kumar proposed a solution scheme for \(c \geq 1 \), based on Boubaker polynomials [1]. For \(c < 1 \),

*Corresponding author. Email addresses: frlin@stu.edu.cn (F.-R. Lin), xqjin@umac.mo (X.-Q. Jin)

there are numerical difficulties [6, 10–12]. Numerical results have been presented by Pastro [10] for small $c > 0$ — viz. $c \in [10^{-4}, 10^{-2}]$. In this article, we consider even smaller values — i.e. $c \leq 10^{-7}$.

We derive our method by exploiting the property that for $x \in (-1, 1)$

$$
\frac{1}{\pi} \int_{-1}^{1} \frac{c}{(x - y)^2 + c^2} f(y) dy \to f(x)
$$

when $c \to 0$ — i.e. the solution of (1.1) is nearly equal to 1/2 for $x \in (-1, 1)$ [6]. We discretise the integral equation by using a DE-sinc quadrature, which is a sinc quadrature based on a double exponential (DE) transformation. The DE transformation was first proposed by Takahasi and Mori [16] for an efficient evaluation of integrals of analytic functions with singularities at end-points, and it is useful not only for numerical integrations but also for various kinds of sinc numerical methods [13, 15]. Ref. [8] provides a review.

The outline of the remainder of this article is as follows. In Section 2, we summarise some basic results for sinc approximations and DE transformations, and a DE-sinc quadrature that is then applied to Love’s equation (1.1) in Section 3. Numerical results in Section 4 illustrate the efficiency and accuracy of the proposed numerical scheme.

2. A DE-sinc Quadrature

There are some basic results for sinc numerical methods based on double exponential transformations, or so-called DE-sinc numerical methods. In particular, we introduce a DE-sinc quadrature. Let us first mention some familiar related notation and concepts:

- The set of all integers, the set of all real numbers, and the set of all complex numbers are denoted by \mathbb{Z}, \mathbb{R}, and \mathbb{C}, respectively;
- x and z denote the real and complex variables, respectively; and
- D_d is the strip region of width $2d$ ($d > 0$) defined by

$$D_d = \{ \zeta \in \mathbb{C} : |\text{Im} \, \zeta | < d \} .$$

The sinc function is defined by

$$\text{sinc}(x) = \begin{cases}
\frac{\sin(\pi x)}{\pi x}, & x \neq 0, \\
1, & x = 0.
\end{cases}$$

Let $h > 0$ denote the mesh size in the sinc approximation, and let

$$S_{k,h}(x) \equiv \text{sinc}(x/h - k), \quad k \in \mathbb{Z}$$

denote the sinc bases corresponding to h.