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Abstract. The Unsteady Adaptive Stochastic Finite Elements (UASFE) approach is a
robust and efficient uncertainty quantification method for resolving the effect of ran-
dom parameters in unsteady simulations. In this paper, it is shown that the underly-
ing Adaptive Stochastic Finite Elements (ASFE) method for steady problems based on
Newton-Cotes quadrature in simplex elements is extrema diminishing (ED). It is also
shown that the method is total variation diminishing (TVD) for one random parameter
and for multiple random parameters for first degree Newton-Cotes quadrature. It is
proven that the interpolation of oscillatory samples at constant phase in the UASFE
method for unsteady problems results in a bounded error as function of the phase for
periodic responses and under certain conditions also in a bounded error in time. The
two methods are applied to a steady transonic airfoil flow and a transonic airfoil flutter
problem.
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1 Introduction

Deterministic numerical solutions of engineering flow and fluid-structure interaction
problems contain no information about the influence of parameter variations on the out-
puts of interest. Physical uncertainties are, however, present in practically all engineer-
ing applications due to, for example, varying atmospheric conditions, and production
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tolerances affecting material properties and the geometry. These inherent physical vari-
ations enter the computational problem through physical input parameters, and initial
and boundary conditions. Especially, discontinuous solutions of shock waves in super-
sonic flow and bifurcation phenomena of aeroelastic systems are highly sensitive to this
input variability. Dynamic fluid-structure interaction systems also amplify input varia-
tions with time.

Physical variability is here described in a probabilistic framework by random pa-
rameters with known probability density. The distribution functions and the statistical
moments of outputs of interest are determined in order to obtain more reliable compu-
tational predictions, which can be utilized in robust design optimization and reducing
design safety factors. In contrast, in structural reliability analysis input randomness is
propagated to compute the probability of failure [4]. Failure probabilities are often small
such that in that case the tails of the distribution are of interest.

The resulting mathematical formulation of the uncertainty quantification problem for
output of interest u(x,t,ω) is

L(x,t,ω;u(x,t,ω))=S(x,t,ω), (1.1)

with appropriate initial and boundary conditions. Operator L and source term S are de-
fined on domain D×T×Ω, where x∈D and t∈T are the spatial and temporal dimensions
with D⊂R

d, d={1,2,3}, and T⊂R. The argument ω emphasizes that u(x,t,ω) is a ran-
dom event with the set of outcomes Ω of the probability space (Ω, F , P) with F ⊂2Ω the
σ-algebra of events and P a probability measure. The probability space originates from
na uncorrelated second order random parameters

a(ω)={a1(ω),··· ,ana(ω)}∈A,

with probability density fa(a) in Eq. (1.1) and its initial and boundary conditions, with
parameter space A⊂R

na .
For a single realization ω=ωk, u(x,t,ωk) reduces to the deterministic function uk(x,t)

in terms of the spatial coordinates x and time t. The numerical approximation of uk(x,t)
can be obtained using standard spatial discretization methods and time marching schemes.
A weighted approximation of the response surface u∗(x,t,a) based on ns deterministic so-
lutions {uk(x,t)}ns

k=1 is considered a solution of uncertainty quantification problem (1.1).
Integration and sorting of u∗(x,t,a) results in the statistical moments µui

(x,t)

µui
(x,t)=

∫

A
u∗(x,t,a)i fa(a)da, (1.2)

and its probability distribution.
The classical approach of solving (1.1) by computing many deterministic solutions

for randomly sampled parameter values in a Monte Carlo simulation [9] leads to im-
practically high computational costs for flow and fluid-structure simulations, which are
already computationally intensive in the deterministic case. Non-intrusive Polynomial


