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Abstract. The purpose of this paper is to numerically realize the inverse scattering
scheme proposed in [19] of reconstructing complex elastic objects by a single far-field
measurement. The unknown elastic scatterers might consist of both rigid bodies and
traction-free cavities with components of multiscale sizes presented simultaneously.
We conduct extensive numerical experiments to show the effectiveness and efficiency
of the imaging scheme proposed in [19]. Moreover, we develop a two-stage technique,
which can significantly speed up the reconstruction to yield a fast imaging scheme.
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1 Introduction

This work concerns the numerical realization of an imaging scheme proposed in [19] for
reconstructing complex elastic scatterers embedded in a homogeneous isotropic back-
ground medium occupying R3. Let λ and µ be two constants such that µ>0 and 3λ+2µ>
0. λ and µ are the Lamé constants that constitute the parameterization of the back-
ground elastic material. Throughout, we assume that the density of the background
elastic medium is normalized to be 1. Let D⊂R3 be a bounded domain with a C2 bound-
ary ∂D and a connected complement R3\D. D denotes the inhomogeneous elastic body
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that we intend to recover by using elastic wave measurements made away from it. In
what follows, D is referred to as a scatterer. The detecting elastic field is taken to be the
time-harmonic plane wave of the form

uin (x)=uin
(

x;d,d⊥,α, β,ω
)
=αdeikp x·d+βd⊥eiks x·d, α, β∈C, (1.1)

where d ∈ S2 :=
{

x∈R3 : |x|=1
}

is the incident direction ; the vector d⊥ ∈ S2 satisfying

d⊥ ·d=0 denotes the polarization direction; and ks :=ω/
√

µ, kp :=ω/
√

λ+2µ denote the

shear and compressional wave numbers, respectively. Let usc(x)∈C3, x∈R3\D denote
the perturbed/scattered elastic displacement field caused by the elastic scatterer and u :=
uin+usc denote the total field. The propagation of the elastic field is governed by the
following reduced Navier equation (or Lamé system)

(△∗+ω2)u=0 in R
3\D, △∗ :=µ△+(λ+µ)grad div. (1.2)

In order to complete the description of the direct elastic scattering problem, we next pre-
scribe the physically meaningful boundary conditions satisfied by the elastic field on ∂D
and at the infinity.

Define the infinitesimal strain tensor by

ǫ(u) :=
1

2

(
∇u+∇uT

)
∈C

3×3, (1.3)

where ∇u and ∇uT stand for the Jacobian matrix of u and its adjoint, respectively. By
Hooke’s law the Cauchy stress tensor relates to the strain tensor via the identity

σ(u)=λ(divu)I+2µǫ(u)∈C
3×3, (1.4)

where I denotes the 3×3 identity matrix. The surface traction (or the stress operator) on
∂D is defined as

Tu=Tνu :=ν·σ(u)=(2µν·grad+λνdiv+µν×curl)u, (1.5)

where ν denotes the unit normal vector to ∂D pointing into R3\D. We also define Ru :=u
in the following. If D is a cavity, then one has the traction-free boundary condition Tu=
0 on ∂D; and if D is a rigid body, then one has Ru=0 on ∂D.

Decomposing the incident wave uin in (1.1), we denote by uin
p := deikp x·d the (normal-

ized) plane pressure wave, and uin
s :=d⊥eiks x·d the (normalized) plane shear wave. By Hodge

decomposition, the scattered field usc can be decomposed into

usc :=usc
p +usc

s , usc
p :=− 1

k2
p

grad divusc, usc
s :=

1

k2
s

curl curlusc,


