A Numerical Study of Complex Reconstruction in Inverse Elastic Scattering

Guanghui Hu¹, Jingzhi Li^{2,*}, Hongyu Liu³ and Qi Wang⁴

¹ Beijing Computational Science Research Center, Beijing 100094, P.R. China.

² Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, P.R. China.

³ Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

⁴ Department of Computing Sciences, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.

Received 16 January 2015; Accepted 26 June 2015

Abstract. The purpose of this paper is to numerically realize the inverse scattering scheme proposed in [19] of reconstructing complex elastic objects by a single far-field measurement. The unknown elastic scatterers might consist of both rigid bodies and traction-free cavities with components of multiscale sizes presented simultaneously. We conduct extensive numerical experiments to show the effectiveness and efficiency of the imaging scheme proposed in [19]. Moreover, we develop a two-stage technique, which can significantly speed up the reconstruction to yield a fast imaging scheme.

AMS subject classifications: 74J20, 74J25, 35Q74, 35R30

Key words: Inverse elastic scattering, complex scatterers, cavities and rigid elastic bodies, singleshot method.

1 Introduction

This work concerns the numerical realization of an imaging scheme proposed in [19] for reconstructing complex elastic scatterers embedded in a homogeneous isotropic background medium occupying \mathbb{R}^3 . Let λ and μ be two constants such that $\mu > 0$ and $3\lambda + 2\mu > 0$. λ and μ are the Lamé constants that constitute the parameterization of the background elastic material. Throughout, we assume that the density of the background elastic medium is normalized to be 1. Let $D \subset \mathbb{R}^3$ be a bounded domain with a C^2 boundary ∂D and a connected complement $\mathbb{R}^3 \setminus \overline{D}$. D denotes the inhomogeneous elastic body

http://www.global-sci.com/

^{*}Corresponding author. *Email addresses:* hu@csrc.ac.cn (G. Hu), li.jz@sustc.edu.cn (J. Li), hongyu.liuip@gmail.com (H. Liu), qi.wang.xjtumath@gmail.com (Q. Wang)

that we intend to recover by using elastic wave measurements made away from it. In what follows, *D* is referred to as a *scatterer*. The detecting elastic field is taken to be the time-harmonic plane wave of the form

$$u^{in}(x) = u^{in}\left(x; d, d^{\perp}, \alpha, \beta, \omega\right) = \alpha de^{ik_p x \cdot d} + \beta d^{\perp} e^{ik_s x \cdot d}, \quad \alpha, \beta \in \mathbb{C},$$
(1.1)

where $d \in \mathbb{S}^2 := \{x \in \mathbb{R}^3 : |x| = 1\}$ is the incident direction ; the vector $d^{\perp} \in \mathbb{S}^2$ satisfying $d^{\perp} \cdot d = 0$ denotes the polarization direction; and $k_s := \omega / \sqrt{\mu}, k_p := \omega / \sqrt{\lambda + 2\mu}$ denote the shear and compressional wave numbers, respectively. Let $u^{sc}(x) \in \mathbb{C}^3, x \in \mathbb{R}^3 \setminus \overline{D}$ denote the perturbed/scattered elastic displacement field caused by the elastic scatterer and $u := u^{in} + u^{sc}$ denote the total field. The propagation of the elastic field is governed by the following reduced Navier equation (or Lamé system)

$$(\triangle^* + \omega^2)u = 0 \quad \text{in } \mathbb{R}^3 \setminus \overline{D}, \quad \triangle^* := \mu \triangle + (\lambda + \mu) \text{grad div.}$$
(1.2)

In order to complete the description of the direct elastic scattering problem, we next prescribe the physically meaningful boundary conditions satisfied by the elastic field on ∂D and at the infinity.

Define the infinitesimal strain tensor by

$$\epsilon(u) := \frac{1}{2} \left(\nabla u + \nabla u^T \right) \in \mathbb{C}^{3 \times 3}, \tag{1.3}$$

where ∇u and ∇u^T stand for the Jacobian matrix of u and its adjoint, respectively. By Hooke's law the Cauchy stress tensor relates to the strain tensor via the identity

$$\sigma(u) = \lambda(\operatorname{div} u)\mathbf{I} + 2\mu\epsilon(u) \in \mathbb{C}^{3\times 3},\tag{1.4}$$

where I denotes the 3×3 identity matrix. The surface traction (or the stress operator) on ∂D is defined as

$$Tu = T_{\nu}u := \nu \cdot \sigma(u) = (2\mu\nu \cdot \operatorname{grad} + \lambda\nu \operatorname{div} + \mu\nu \times \operatorname{curl})u, \tag{1.5}$$

where ν denotes the unit normal vector to ∂D pointing into $\mathbb{R}^3 \setminus \overline{D}$. We also define Ru := u in the following. If D is a cavity, then one has the traction-free boundary condition Tu = 0 on ∂D ; and if D is a rigid body, then one has Ru = 0 on ∂D .

Decomposing the incident wave u^{in} in (1.1), we denote by $u_p^{in} := de^{ik_p x \cdot d}$ the (normalized) *plane pressure wave*, and $u_s^{in} := d^{\perp}e^{ik_s x \cdot d}$ the (normalized) *plane shear wave*. By Hodge decomposition, the scattered field u^{sc} can be decomposed into

$$u^{sc} := u_p^{sc} + u_s^{sc}, \quad u_p^{sc} := -\frac{1}{k_p^2} \text{grad div} u^{sc}, \quad u_s^{sc} := \frac{1}{k_s^2} \text{curl curl} u^{sc},$$