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Abstract. The purpose of this paper is to numerically realize the inverse scattering
scheme proposed in [19] of reconstructing complex elastic objects by a single far-field
measurement. The unknown elastic scatterers might consist of both rigid bodies and
traction-free cavities with components of multiscale sizes presented simultaneously.
We conduct extensive numerical experiments to show the effectiveness and efficiency
of the imaging scheme proposed in [19]. Moreover, we develop a two-stage technique,
which can significantly speed up the reconstruction to yield a fast imaging scheme.
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1 Introduction

This work concerns the numerical realization of an imaging scheme proposed in [19] for
reconstructing complex elastic scatterers embedded in a homogeneous isotropic back-
ground medium occupying IR®. Let A and p be two constants such that ¢ >0 and 3A+2p >
0. A and u are the Lamé constants that constitute the parameterization of the back-
ground elastic material. Throughout, we assume that the density of the background
elastic medium is normalized to be 1. Let D CIR® be a bounded domain with a C2 bound-
ary 9D and a connected complement R3\D. D denotes the inhomogeneous elastic body
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that we intend to recover by using elastic wave measurements made away from it. In
what follows, D is referred to as a scatterer. The detecting elastic field is taken to be the
time-harmonic plane wave of the form

u' (x) =y (x;d,d%oc,[v’,w) :adeikpx'd%—ﬁdLeiksx'd, a,peC, (1.1)

where d € $?:= {x€R3: |x| =1} is the incident direction ; the vector d* € S? satisfying
d+-d=0 denotes the polarization direction; and ks:=w/ /i, ky:=w//A+2p denote the
shear and compressional wave numbers, respectively. Let u%(x) € C?, x € R*\D denote
the perturbed /scattered elastic displacement field caused by the elastic scatterer and u:=
ui" +45¢ denote the total field. The propagation of the elastic field is governed by the
following reduced Navier equation (or Lamé system)

(A +w?)u=0 in R*\D, A*:=pA+(A+pu)grad div. (1.2)

In order to complete the description of the direct elastic scattering problem, we next pre-
scribe the physically meaningful boundary conditions satisfied by the elastic field on 9D
and at the infinity.

Define the infinitesimal strain tensor by

e(u) ;:% (w+wT> eC®3, (1.3)

where Vu and Vu! stand for the Jacobian matrix of u and its adjoint, respectively. By
Hooke’s law the Cauchy stress tensor relates to the strain tensor via the identity

o(u)=A(divu)I4+2ue(u) € C>*3, (1.4)

where I denotes the 3 x 3 identity matrix. The surface traction (or the stress operator) on
oD is defined as

Tu=Tyu:=v-o(u)=(2uv-grad +Avdiv+puv x curl)u, (1.5)

where v denotes the unit normal vector to 9D pointing into R*\ D. We also define Ru:=u
in the following. If D is a cavity, then one has the traction-free boundary condition Tu =
0 on dD; and if D is a rigid body, then one has R =0 on dD.

Decomposing the incident wave 1" in (1.1), we denote by u;” :=del*»*? the (normal-
ized) plane pressure wave, and u!" :=d*e** the (normalized) plane shear wave. By Hodge
decomposition, the scattered field 1° can be decomposed into
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whi=u, tus, oy .——k—Zgraddwu , U .—k—zcurlcurlu ,
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