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Abstract. Many physical processes are described by elliptic or parabolic partial dif-
ferential equations. For linear stability problems associated with such equations, the
inverse Laplacian provides a very effective preconditioner. In addition, it is also read-
ily available in most scientific calculations in the form of a Poisson solver or an implicit
diffusive timestep. We incorporate Laplacian preconditioning into the inverse Arnoldi
method, using BiCGSTAB to solve the large linear systems. Two successful implemen-
tations are described: spherical Couette flow described by the Navier-Stokes equations
and Bose-Einstein condensation described by the nonlinear Schrödinger equation.
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1 Introduction

Many physical systems are governed by parabolic evolution equations of the general
form

∂tU= LU+N(U), (1.1)

where L is the Laplacian operator and N represents some combination of nonlinear terms
or a multiplicative potential. Two examples which we will consider are the Navier-Stokes
equations

∂tU=−(U ·∇)U−∇P+ν∇2U, (1.2a)

∇·U=0, (1.2b)

and the nonlinear Schrödinger equation

−i∂tΨ=

[

1

2
∇2+µ−V(x)−a|Ψ|2

]

Ψ. (1.3)
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Steady solutions of (1.1) satisfy

0= LU+N(U) (1.4)

and the Jacobian operator evaluated at U is defined by

A≡ L+NU , (1.5)

where NU is the linearization of N at U. Steady bifurcations from U occur when an
eigenvalue of A crosses zero. For this reason, we are interested in the eigenvalues of
(1.5) which are closest to zero. These eigenvalues can be calculated by the classic in-
verse power method, generalized to the inverse Arnoldi method [1]. The sequence {uk≡
A−(k−1)u1; k=1,···K} is generated by solving

Auk+1=uk . (1.6)

This sequence is orthonormalized by the usual Arnoldi process to yield the basis {vk} for
the Krylov space and the upper Hessenberg matrix

Hjk≡〈vj,A
−1vk〉. (1.7)

H is directly diagonalized, yielding

Hφk=λkφk , (1.8)

with estimated eigenpairs (λ−1
k ,Vφk) for A, where V is the rectangular matrix whose jth

column is vj. A shift s can, as usual, be used to accelerate convergence of the Arnoldi
method to a desired eigenvalue. In this case, we solve

(A−sI)uk+1=uk. (1.9)

Solving the linear systems (1.6) or (1.9) is by far the most time-consuming part of the
algorithm. This means that it is far more difficult to find the smallest eigenvalues of A
than the largest ones, since acting with A is usually far easier than acting with its inverse.
The purpose of this paper is to present a method for quickly formulating and solving the
linear systems (1.6) or (1.9), assuming that we have a time-stepping code for integrating
the time-dependent equation (1.1).

A related scheme has been used to compute steady states via Newton’s method [2–6].
This scheme has been proposed and used as a method for calculating eigenvalues in
[7–10]. Here we provide a study of its convergence.

2 Method

2.1 Laplacian preconditioning

Our method for solving (1.6) is based on the BiCGSTAB variant of the conjugate gradient
method [11]. Since A results from the spatial discretization of a partial differential equa-
tion, its size may be quite large. Denoting by M the number of points or modes necessary


