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Abstract. An entropy stable fully discrete shock capturing space-time Discontinuous
Galerkin (DG) method was proposed in a recent paper [20] to approximate hyper-
bolic systems of conservation laws. This numerical scheme involves the solution of a
very large nonlinear system of algebraic equations, by a Newton-Krylov method, at
every time step. In this paper, we design efficient preconditioners for the large, non-
symmetric linear system, that needs to be solved at every Newton step. Two sets of
preconditioners, one of the block Jacobi and another of the block Gauss-Seidel type are
designed. Fourier analysis of the preconditioners reveals their robustness and a large
number of numerical experiments are presented to illustrate the gain in efficiency that
results from preconditioning. The resulting method is employed to compute approxi-
mate solutions of the compressible Euler equations, even for very high CFL numbers.
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1 Introduction

Hyperbolic systems of conservation laws are systems of nonlinear partial differential
equations that model many interesting phenomena in physics and engineering. Exam-
ples include the shallow water equations of oceanography, the compressible Euler equa-
tions of aerodynamics, the magnetohydrodynamics (MHD) equations of plasma physics
and the equations of nonlinear elastodynamics [6].
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It is well known that solutions of systems of conservation laws can form disconti-
nuities such as shock waves, even when the initial data is smooth. Hence, the solutions
of systems of conservation laws is interpreted in the weak (distributional) sense. These
weak solutions are not necessarily unique. Further admissibility criteria in the form of
entropy conditions need to be imposed in order to guarantee uniqueness. Detailed for-
mulation of entropy solutions is provided in Section 2 and in standard textbooks such
as [6]. But in fact, recent work [11, 14] suggests that the notion of solutions has to be
further weakened into the more general entropy measure valued solutions in order to ob-
tain wellposedness for multi-dimensional systems of conservation laws. Measure valued
solutions are space-time parametrized probability measures and are shown to be natural
limits of numerical approximations [11].

1.1 Numerical schemes

Given the nonlinear nature of systems of conservation laws, it is not possible to obtain
explicit solution formulas. Consequently, numerical methods play a key role in the study
of these equations. Various numerical methods of the finite difference, finite volume,
finite element and spectral type are available for the approximation of systems of con-
servation laws. In particular, the finite volume (difference) methods, that update cell av-
erages (point values) in terms of numerical fluxes, are heavily used [28]. The numerical
fluxes are obtained by using exact or approximate Riemann solvers. Higher-order spa-
tial accuracy results from non-oscillatory piecewise polynomial reconstruction in each
cell. Reconstruction procedures such as TVD [28], ENO [17] and WENO [30] are typi-
cally employed. Higher order temporal accuracy is achieved by using strong stability
preserving (SSP) Runge-Kutta (RK) time integrators. An alternative to high-order finite
volume methods is the discontinuous Galerkin finite element method [4, 5]. At lowest
(first) order, these methods reduce to the standard finite volume method. However, high-
order accuracy is obtained by using piecewise polynomial test and trial functions in each
element. Limiters are employed to damp oscillations near shocks. Temporal accuracy
is again increased by using SSP-RK methods. High-order finite volume methods and
RKDG methods have been very successful in carrying out realistic large scale simula-
tions of conservation laws [31].

The key questions in the numerical analysis of systems of conservation laws are that
of stability and convergence of numerical schemes [15]. These questions have been care-
fully investigated in the simple case of scalar conservation laws. For this class of prob-
lems, first-order monotone schemes [15] satisfy a discrete maximum principle, a discrete
form of the entropy inequality as well as the TVD property. Hence, they can be shown to
converge to the entropy solution. Similar results have also been derived for higher order
schemes, see [12] and references therein. However, the questions of stability and conver-
gence are much harder to tackle for systems of conservation laws. For such equations,
entropy stability, i.e., compliance with a discrete form of the entropy inequality, seems
to be a reasonable stability requirement for numerical schemes [32]. Entropy stable finite


