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Abstract. In this work, we propose and compare four different strategies for simu-
lating the fluid model of quasi-three-dimensional streamer propagation, consisting of
Poisson’s equation for the particle velocity and two continuity equations for particle
transport in the cylindrical coordinate system with angular symmetry. Each strat-
egy involves one method for solving Poisson’s equation, a discontinuous Galerkin
method for solving the continuity equations, and a total variation-diminishing Runge-
Kutta method in temporal discretization. The numerical methods for Poisson’s equa-
tion include discontinuous Galerkin methods, the mixed finite element method, and
the least-squares finite element method. The numerical method for continuity equa-
tions is the Oden-Babuška-Baumann discontinuous Galerkin method. A slope limiter
for the DG methods in the cylindrical coordinate system is proposed to conserve the
physical property. Tests and comparisons show that all four strategies are compati-
ble in the sense that solutions to particle densities converge. Finally, different types of
streamer propagation phenomena were simulated using the proposed method, includ-
ing double-headed streamer in nitrogen and SF6 between parallel plates, a streamer
discharge in a point-to-plane gap.
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1 Introduction

A streamer is a type of electrical discharge emerging when a strong electric field is ap-
plied to a gap, e.g., in air gas. Streamers appear in nature as well as in many industrial
applications, such as ozone generation, air purification, and plasma-assisted combustion.
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Because streamers develop within a very short time, e.g., nanoseconds or microseconds,
it is difficult to measure all the micro-physical parameters by performing experiments.
This motivated researchers to use numerical simulations to study the physics of streamer
discharges [1–12].

The simplest model for simulating streamer propagation is a fluid model with the
assumption of angular symmetry. This model consists of two continuity equations for
particle densities coupled with Poisson’s equation for the electric potential and electric
field that determines the velocity of the particles [5]:





∂σ
∂t +

1
r∇·(rµσσE−rD∇σ)=S|E|eK/|E|σ, (r,z)∈Ω, t>0;

∂ρ
∂t +

1
r ∇·(rµρρE)=S|E|eK/|E|σ, (r,z)∈Ω, t>0;

− 1
r∇·(r∇φ)=ρ−σ, E=−∇φ, (r,z)∈Ω, t>0,

(1.1)

where the operator ∇·V is defined as ( ∂Vr
∂r +

∂Vz
∂r ), and the computational domain is gen-

erally defined by
Ω={(r,z) : 0≤ r≤R, 0≤ z≤ f (r)}.

In the above so-called quasi-three-dimensional (quasi-3D) model, σ and ρ are the
rescaled densities of electrons and positive ions, respectively; φ and E denote the elec-
tric potential and electric field, respectively; µσ =−1, µρ signify rescaled mobility con-
stants for electrons and positive ions, respectively; D represents the rescaled diffusion
coefficient for electrons. The remaining two rescaled parameters, S and K, are defined
as S= APx0 and K= BPx0

V0
, respectively, where x0 and V0 are the length scale and applied

potential scale, respectively; P is the pressure in torr, and A and B are two constants.
A Dirichlet boundary condition according to the applied voltage, is assigned to the

Poisson equation, and homogeneous Neumann boundary conditions are assigned to the
continuity equations.

Previous studies show that Poisson’s equation occupies most of the computational
time [8] and many methods have been attempted—for instance, the finite volume method
used by U. Ebert, D. Bessières et al. [5, 7] and the discontinuous Galerkin methods intro-
duced by D. Arnold, M. Wheeler et al. [13–15]. Because the electric field, rather than the
electric potential, couples with the continuity equations, it is natural to seek a numerical
method that can directly derive a high-accuracy solution for the electric field. To do so,
we refer to the mixed finite element method (MFEM) [16, 17] and least-squares finite ele-
ment method (LSFEM) [18, 19]. Both methods rewrite Poisson’s equation as a first- order
system, where the electric potential and field become two independent variables. How-
ever, these methods have to solve more degrees of freedom, which requires additional
computational time.

It is worth emphasising that Poisson’s equation determines the velocity of the parti-
cles in the continuity equations. Thus, the compatibility of methods for Poisson’s equa-
tion and the continuity equations is an important issue [20].

The above continuity equations are convection-dominated if the source terms are
not taken into consideration. As is well known, traditional linear schemes for convec-


