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Abstract. In this work, we propose a second-order version and a fourth-order version
of a Cartesian grid-based boundary integral method for an interface problem of the
Laplace equation on closely packed cells. When the cells are closely packed, the bound-
ary integrals involved in the boundary integral formulation for the interface problem
become nearly singular. Direct evaluation of the boundary integrals has accuracy is-
sues. The grid-based method evaluates a boundary integral by first solving an equiva-
lent, simple interface problem on a Cartesian grid with a fast Fourier transform based
Poisson solver, then interpolating the grid solution to get values of the boundary inte-
gral at discretization points of the interface. The grid-based method presents itself as
an alternative but accurate numerical method for evaluating nearly singular, singular
and hyper-singular boundary integrals. This work can be regarded as a further devel-
opment of the kernel-free boundary integral method [W.-J. Ying and C. S. Henriquez,
A kernel-free boundary integral method for elliptic boundary value problems, Journal
of Computational Physics, Vol. 227 (2007), pp. 1046-1074] for problems in unbounded
domains. Numerical examples with both second-order and fourth-order versions of
the grid-based method are presented to demonstrate accuracy of the method.
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1 Introduction

Let Ωi ⊂ R
2 be a bounded open set with smooth boundary, which may have multiple

disconnected components, Ωe=R
2\Ω̄i be the unbounded, complementary domain and Γ

be the interface, the common boundary of Ωi and Ωe. When the interface Γ has multiple
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Figure 1: Multi-component interfaces: (a) closely packed cells, (b) illustration of symbols for the interface and
subdomains (cells).

components, we write Γ =
⋃K

k=1 Γk, and assume each component Γk is a simple closed
curve. We call the subdomain enclosed by each interface component Γk a cell, denoted

by Ω
(k)
i .

Let p=(x,y)∈R
2 be a point in space. Suppose Φi(p) and Φe(p) are two unknown

potential functions on Ωi and Ωe, respectively. They satisfy the Laplace equation

△Φi(p)=0, in Ωi (1.1)

and
△Φe(p)=0, in Ωe. (1.2)

Let

Φ(p)=

{

Φi(p), p∈Ωi,

Φe(p), p∈Ωe.

In general, the function Φ(p) is discontinuous across the interface Γ. Let

Φi(p)−Φe(p)=Vm(p) on Γ, (1.3)

where Vm(p) will be known. Assume the conductivities σi and σe on Ωi and Ωe are
constant but distinct (σi 6=σe). Let

σi
∂Φi(p)

∂np
−σe

∂Φe(p)

∂np
= Jm(p) on Γ. (1.4)

Here, np is the unit normal vector pointing from the bounded domain Ωi to the un-
bounded domain Ωe at point p∈ Γ; Jm(p) will be known, too. We assume the potential
function Φe(p) satisfies the far field condition

Φe(p)→0, as |p|=
√

x2+y2→∞. (1.5)


