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Abstract. We present a model reduction approach to construct problem dependent ba-
sis functions and compute eigenvalues and eigenfunctions of stationary Schrödinger
equations. The basis functions are defined on coarse meshes and obtained through
solving an optimization problem. We shall show that the basis functions span a low-
dimensional generalized finite element space that accurately preserves the lowermost
eigenvalues and eigenfunctions of the stationary Schrödinger equations. Therefore,
our method avoids the application of eigenvalue solver on fine-scale discretization and
offers considerable savings in solving eigenvalues and eigenfunctions of Schrödinger
equations. The construction of the basis functions are independent of each other; thus
our method is perfectly parallel. We also provide error estimates for the eigenvalues
obtained by our new method. Numerical results are presented to demonstrate the ac-
curacy and efficiency of the proposed method, especially Schrödinger equations with
double well potentials are tested.
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1 Introduction

In this paper, we construct a set of problem dependent basis functions to compute eigen-
values and eigenfunctions of Schrödinger equations. To be more specific, we consider the
eigenvalue problem of the stationary Schrödinger equation with a potential V(x) of the
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following form

Hu(x) :=−∆u(x)+V(x)u(x)=λu(x), x∈Ω⊆Rd, (1.1)

u(x)=0, x∈∂Ω⊆Rd, (1.2)

where Ω is a bounded domain in R
d and V(x) : Rd →R is a real-valued function. λ and

u(x) are the corresponding eigenvalues and eigenfunctions of the Hamiltonian operator
H=−∆+V(x). We should emphasize that the spectrum of the Hamiltonian operator H
can have negative values and physically the negative part of the spectrum corresponding
to bound states and they have many important applications in computational chemistry
[6, 17, 18, 29].

The eigenvalue problem of (1.1) in variational form reads: find an eigenvalue λ and
its associated eigenfunction u(x)∈W :=H1

0(Ω) such that

a(u,v) :=
∫

Ω

(

∇u(x)·∇v(x)+V(x)u(x)v(x)
)

dx=λ
∫

Ω
u(x)v(x)dx=λ(u,v), (1.3)

for all v ∈ W. By using the finite element method (FEM), we obtained the discretized
problem of the eigenvalue problem (1.3): find λh and associated eigenfunctions uh(x)∈
Vh⊆W such that

a(uh,vh)=λh(uh,vh), for all vh ∈Vh, (1.4)

where Vh is a conforming finite element space spanned by Nh nodal basis functions on
some regular finite element mesh Th with mesh size h. After the FEM discretization,
one could apply eigenvalue algorithms, including QR-algorithm, Lanczos algorithm, and
Arnoldi iteration, directly to the Nh-dimensional finite element matrices to obtain the
eigen-pairs {λh,uh}, see [10] and references therein. We remark that it is extremely ex-
pensive to compute eigenvalues and eigenfunctions of (1.4) when Nh becomes big. For
example, finding all eigenvalues and eigenvectors of the matrix corresponding to the
FEM discretization of (1.4) using QR-algorithm costs 6N3

h +O(N2
h ) flops.

In practice, however, we are mainly interested in the first few lowermost eigenvalues
and eigenfunctions as they have important meanings in computational chemistry [19].
In addition, when we use the FEM to approximate eigenvalues of (1.4), the number of
reliable numerical eigenvalues takes up only a tiny portion of the total degrees of freedom
Nh in the resulting discrete system. See [2, 30–32, 35] for the discussion of second-order
elliptic eigenvalue problems.

This motivates us to avoid the application of eigenvalue algorithms for the fine-scale
FEM discretization (1.4) and build a low-dimensional generalized finite element space
so that we can accurately and efficiently compute the lowermost eigenvalues and eigen-
functions. Specifically, we introduce a coarse discretization of the physical space Ω into
mesh TH with mesh size H≫h. On the coarse mesh TH, we build a set of basis functions
{Ψi(x)}NH

i=1 that generate a low-dimensional generalized finite element space Vc. The di-
mension of Vc is NH and it is much smaller than Nh. In the low-dimensional space Vc,


