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Abstract. In this paper, we present a numerical scheme for the steady-state radiative
transfer equation (RTE) with Henyey-Greenstein scattering kernel. The scattering ker-
nel is anisotropic but not highly forward peaked. On the one hand, for the velocity dis-
cretization, we approximate the anisotropic scattering kernel by a discrete matrix that
can preserve the diffusion limit. On the other hand, for the space discretization, a uni-
formly convergent scheme up to the boundary or interface layer is proposed. The idea
is that we first approximate the scattering coefficients as well as source by piecewise
constant functions, then, in each cell, the true solution is approximated by the sum-
mation of a particular solution and a linear combinations of general solutions to the
homogeneous RTE. Second-order accuracy can be observed, uniformly with respect to
the mean free path up to the boundary and interface layers. The scheme works well
for heterogenous medium, anisotropic sources as well as for the strong source regime.
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1 Introduction

To monitor the development of disease-associated processes on a molecular or gene level
prior to the appearance of macroscopic tissue changes, a molecular imaging technique
has been developed [15]. A fluorescent bio-chemical marker that emits light is injected
into a biological system to map the distribution of the administered molecule or gene. A
highly sensitive camera is then used to capture the bioluminescent signal and determine
the localization of the reporter. Bioluminescence tomography is an inverse problem that
uses the optical signals on the surface of the animal body to quantitatively reconstruct the
bioluminescent source distribution. This technique has attracted more and more atten-
tion recently [4,10,15]. To reconstruct the bioluminescent source distribution, the solution
of a forward model is iteratively utilized to provide predicted measurement data, thus a
good solver for the forward problem is required.

Light propagation in biological tissue is governed by the 3d steady-state RTE:

c∂xΨ+s∂yΨ+ζ∂zΨ+σTΨ=
1

4π
(σT−σA)

∫

S2
P(u′,u)Ψ(x,y,z,u′)du′+q, (x,y,z)∈Ω, (1.1)

with inflow boundary conditions

Ψ(x,y,z,u)= Ψ̃(x,y,z,u), for u·n<0, (x,y,z)∈∂Ω. (1.2)

Here u=(c,s,ζ) with c2+s2+ζ2=1 is a 3d vector on a unit sphere describing the direction
of photons. Ω is a bounded domain with boundary ∂Ω, while n is the outer normal vector
of ∂Ω. Ψ(x,y,z,u) is the probability density of photons that move along the direction u

at position (x,y,z). σT , σA are respectively the total cross section and absorption cross
section. They depend on space but are independent of u. q=q(x,y,z,u) is the source term
that can depend both on space and velocity. P(u,u′) gives the probability that photons
change their direction from u′ to u after scattering.

In this paper, we consider the Henyey-Greenstein scattering kernel, which is usually
used in biological tissue for ray transportation. Let θ be the angle between u and u′, the
Henyey-Greenstein kernel writes

P(u′,u)=G(u·u′)=G(cosθ)=
1

2

1−g2

(1+g2−2gcosθ)
3
2

, (1.3)

where θ is the included angle between u, u′ and 0≤g<1 is the asymmetry factor describ-
ing the anisotropy strength of the scattering kernel. g= 0 is the isotropic scattering case
and that g is close to 1 indicates the highly forward peaked case. The Henyey-Greenstein
kernel satisfies

∫ 1

−1
G(cosθ)d(cosθ)=1, (1.4)

and
∫ 1

−1
cosθG(cosθ)d(cosθ)= g. (1.5)


