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Abstract. In this paper we propose a uniformly convergent numerical method for dis-
cretizing singularly perturbed nonlinear eigenvalue problems under constraints with
applications in Bose-Einstein condensation and quantum chemistry. We begin with
the time-independent Gross-Pitaevskii equation and show how to reformulate it into
a singularly perturbed nonlinear eigenvalue problem under a constraint. Matched
asymptotic approximations for the problem are presented to locate the positions and
characterize the widths of boundary layers and/or interior layers in the solution. A
uniformly convergent numerical method is proposed by using the normalized gradi-
ent flow and piecewise uniform mesh techniques based on the asymptotic approxi-
mations for the problem. Extensive numerical results are reported to demonstrate the
effectiveness of our numerical method for the problems. Finally, the method is applied
to compute ground and excited states of Bose-Einstein condensation in the semiclassi-
cal regime and some conclusive findings are reported.
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1 Introduction

We consider the following nonlinear eigenvalue problem [2, 5, 10]

µ φ(x)=−1

2
∇2φ(x)+V(x)φ(x)+β|φ(x)|2φ(x), x∈Ω⊂R

d, (1.1)

φ(x)=0, x∈∂Ω, (1.2)
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where x=(x1,··· ,xd)
T is the spatial coordinate, Ω is a subdomain of R

d (d=1,2,3), V(x)
is a real-valued potential whose shape is determined by the type of system under in-
vestigation, and β is a constant. Eq. (1.1) is also known as the time-independent Gross-
Pitaevskii equation (GPE) in Bose-Einstein condensation (BEC) [3, 7, 24], where φ is the
macroscopic wave function of the condensate and β positive/negative corresponds to re-
pulsive/attractive interaction between atoms. The wave function φ is required to satisfy
the normalization condition

‖φ‖2 :=
∫

Ω
|φ(x)|2 dx=1. (1.3)

For the nonlinear eigenvalue problem (1.1)-(1.2) under the constraint (1.3), any eigen-
value µ which is also called as chemical potential in quantum physics can be computed
from its corresponding eigenfunction φ by

µ := µβ(φ)=
∫

Ω

[

1

2
|∇φ(x)|2+V(x)|φ(x)|2 +β|φ(x)|4

]

dx

= Eβ(φ)+
β

2

∫

Ω
|φ(x)|4 dx, (1.4)

where Eβ(φ) is the energy per particle in BEC and is defined as

Eβ(φ)=
∫

Ω

[

1

2
|∇φ(x)|2+V(x)|φ(x)|2+

β

2
|φ(x)|4

]

dx. (1.5)

In fact, the nonlinear eigenvalue problem (1.1)-(1.2) can be viewed as the Euler-Lagrange
equation of the energy functional Eβ(φ) in (1.5) under the constraint (1.3). In physics
literatures [3, 7, 24], the ground state is defined as the minimizer of the energy functional
in (1.5) over the unit sphere

S={φ | ‖φ‖=1, Eβ(φ)<∞}.

Any other eigenfunctions of the nonlinear eigenvalue problem (1.1)-(1.2) under the con-
straint (1.3), whose energy are greater than that of the ground state, are usually known
as excited states.

Different numerical methods were proposed in the literatures for computing the eigen-
functions, i.e., ground and excited states, of the nonlinear eigenvalue problem (1.1)-(1.2)
under the constraint (1.3). For example, Edwards and Burnett [21] presented a Runge-
Kutta type method and used it to solve one dimensional (1D) and 3D ground states with
spherical symmetry. Adhikari [1] used this approach to get the ground state solution of
GPE in 2D with radial symmetry. Ruprecht et al. [26] used the Crank-Nicolson finite dif-
ference method for solving BEC ground state. Bao and Tang [10] proposed a method by
directly minimizing the energy functional via finite element approximation to obtain the
ground and excited states. Bao and Du [5] presented a continuous normalized gradient


